Тема . КФУ (олимпиада Казанского Федерального Университета)

Алгебраические текстовые задачи на КФУ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела кфу (олимпиада казанского федерального университета)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#103996

Любочка: “Вы сказали, что квадратное уравнение, заданное на дом, имеет не только целые ненулевые коэффициенты, но и два целых корня, а у меня получается, что корней вообще нет”.

Учитель: “Перед  2
x  был написан коэффициент, а ты его пропустила, записывая задание в тетрадь”.

Можно ли утверждать, что Любочка может однозначно исправить свою описку на основе этой информации?

Источники: КФУ - 2025, 11.3 (см. malun.kpfu.ru)

Подсказки к задаче

Подсказка 1

Предположим, что верное задание имеет вид ax² + bx + c = 0. Можно ли подобрать b и c так, чтобы полученное уравнение имело целые корни более, чем при одном значении a?

Подсказка 2

Задействуем теорему Виета. Тогда b = -a(x₁ + x₂) и c = ax₁x₂. Что получится, если разделить одно уравнение на другое?

Подсказка 3

Верно! Теперь у нас стоит задача найти две пары целых x₁ и x₂, у которых суммы обратных величин совпадают и равны -b/c, а также уравнение x² + bx + c = 0 не имеет решений. А можно ли еще добыть информацию про a?

Подсказка 4

Представим ax² + bx + c = (x² + bx + c) + (1-a)x². Левая часть равна нулю, а в правой части первое слагаемое положительно, потому что не имеет нулей. Тогда второе слагаемое отрицательно, что возможно только при целом a < 0. А каков знак c?

Подсказка 5

Верно! c > 0, так как уравнение x² + bx + c = 0 не имеет корней. Тогда, поскольку c > 0 и a < 0, то корни x₁ и x₂ имеют разный знак. Имея такую, достаточно полную информацию, нужно придумать пример!

Показать ответ и решение

Любочка могла записать уравнение с целыми ненулевыми коэффициентами

 2
x + 6x+ 36 =0,

которое не имеет корней, поскольку x2+ 2⋅x⋅3+ 32 +27= (x+3)2+ 27 >0.

При этом можно как дописать старший коэффициент -2:

   2
− 2x + 6x+ 36= 0 ⇐ ⇒  x =− 3 или x =6,

так и дописать коэффициент -6:

− 6x2+ 6x+ 36= 0 ⇐ ⇒  x =3 или x= −2,

причём в обеих случаях получатся подходящие заданные учителем уравнения. Поэтому однозначно восстановить начальное уравнение Любочка уже не может.

_________________________________________________________________________________________________________________________________________________________________________________

Покажем, как можно составлять такие примеры, хотя это необязательно прописывать в решении на олимпиаде.

Пусть верное задание имело вид ax2+ bx +c= 0  . Попробуем подобрать b  и c  так, чтобы полученное уравнение имело целые корни более, чем при одном значении a  .

По теореме Виета b= −a (x1+ x2);c= ax1x2  . Исключим неизвестное a  из этой системы, поделив первое уравнение на второе. Это можно сделать, так как c  не равно 0 . Получаем равенство

 b   1-  1-
−c = x2 + x1.

Значит, надо подобрать две пары целых чисел ( x1;x2  ), для которых суммы обратных величин совпадают.

При этом надо учесть, что уравнение  2
x + bx +c= 0  не имеет корней. Это значит, что все значения левой части положительны и, в частности, значение при x= 0  : c >0  .

Имеем

           (       )
ax2+bx+ c= x2 +bx+ c +(a− 1)x2.

При x= x1  или x= x2  эта сумма равна нулю, в то время как первое слагаемое положительно. Значит, a< 1  . В силу того, что  a  целое, а уравнение — квадратное, a< 0  . Итак, с должно быть положительным, при этом a  — отрицательным. Из соотношения c= ax1x2  следует, что корни имеют разный знак.

Например,

12 + −13-= 13 + −16-= 16.

Подставляя пары корней (2;−3)  и (3;−6)  в теорему Виета, получим, что

b= −a1⋅(− 1)=− a2 ⋅(−3);c =a1⋅(−6)= a2 ⋅(−18).

Следовательно,

b=a1 = 3a2,c =−6b.
Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!