Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела швб (шаг в будущее)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#105233

Найдите все значения параметра b,  при котором для любого значения параметра a∈[−2;1]  неравенство

 2  2    2
a +b − sin 2x− 2(a+ b)cos2x− 2>0

не выполняется хотя бы для одного значения x.

Источники: ШВБ - 2020, 11 класс (см. olymp.bmstu.ru)

Показать ответ и решение

Пусть y =cos2x, y ∈ [−1;1].  Тогда:

 2   2    2
a + b − sin 2x − 2(a+ b)y− 2> 0

2   2     2
a +b − 1+y  − 2(a+b)y− 2> 0

y2− 2(a+ b)y+ a2+ b2 − 3> 0

Найдем при каких a  и b  неравенство выполняется для любых y ∈ [− 1;1].  Рассмотрим функцию f(x)= y2− 2(a+ b)y+ a2+ b2− 3.  Ее графиком является парабола с ветвями вверх и вершиной в точке y0 = − −2(a-+b)= a+ b.
        2⋅1  Рассмотрим три случая местоположения вершины относительно отрезка [−1;1]:

{ a+ b≤ −1      { −1< a+ b< 1      { a+ b≥1
  f(−1)>0   (1)    f(a +b)> 0    (2)    f(1)> 0  (3)

{                       {                  {
  a+ b≤− 1          (1)    −1 <a +b< 1  (2)    a+ b≥ 1           (3)
  (a +1)2+ (b+ 1)2 > 4       ab< −1,5            (a− 1)2+ (b − 1)2 > 4

На координатной плоскости aOb  изобразим множество точек (a,b),  удовлетворяющих всем трём условиям. Точки, для которых неравенство не выполняется хотя бы для одного y ∈ [−1;1]  , лежат внутри области, ограниченной графиками. Проверим область на замкнутость:

PIC

Точки пересечения графиков (a+1)2+ (b+ 1)2 =4  и a+ b= −1:

     2           2
(a+ 1)+ (−1− a+1) = 4

2a2+ 2a− 3= 0

⌊    − 1− √7
|| a= ---2√--
⌈ a= −-1+--7
        2

Точки пересечения графиков ab= −1,5  и a+ b= −1:

a⋅(− 1− a)= −1,5

−a − a2+ 1,5= 0

⌊        √ -
  a= −-1−--7
||⌈       2√ -
  a= −-1+2--7

Аналогично проверяем точки пересечения графиков с a +b= 1.  Точки совпадают, значит, область замкнутая.

В итоге, точки, для которых неравенство y2− 2(a+ b)y+ a2+ b2− 3> 0  не выполняется хотя бы для одного y ∈[−1;1],  образуют замкнутую область, граница которой состоит из графиков двух окружностей и гиперболы, граница включается. Для решения задачи необходимо найти такие значения b,  при которых точки (a,b)  попадают в получившуюся область для любых a∈ [−2,1].  Такие значения b  образуют отрезок [b1;b2].

b1  найдем, подставив a= 1  в уравнение гиперболы. b2  найдем, подставив a= −2  в уравнение окружности (a+ 1)2+ (b+1)2 = 4.  Получаем [         ]
 −1,5;√3-− 1 .

Ответ:

 [−1,5;√3− 1]

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!