Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела швб (шаг в будущее)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#86348

Найдите все значения параметра a  , при которых неравенство

 ∘-2-----       x2+-324-
2 x + 324− f(x)≥ f(x)− a − a

имеет единственное решение, если

      ∘---------
f(x)=  g2(x)− 400,  g(x)= 19+ 2cos2x+ 4cosx.

Источники: ШВБ - 2024, 11.4 (см. olymp.bmstu.ru)

Показать ответ и решение

В обозначениях u(x)= √x2+-324, v(x)=f(x)− a  исходное неравенство примет вид

      (u(x))2
2u(x) ≥-v(x)-+ v(x)

0≥ (u(x)−-v(x))2-
      v(x)

u(x)= v(x) или v(x)< 0

Функция v(x)  непрерывна как композиция непрерывных функций, поэтому у неравенства v(x)< 0  не может быть единственное решение, так что нам подходит только случай v(x)=u(x).  Заметим, что никакое решение этого случая не может удовлетворять v(x)< 0,  ведь тогда u(x)= √x2+-324< 0,  что невозможно.

Итак, мы переформулировали задачу и получили такую: обеспечить единственность решения уже для уравнения

        ∘-2-----
a= f(x)−  x + 324

Заметим, что функция g(x)  чётная, поэтому и функция f(x)  чётная, так что и правая часть полученного уравнения чётная. Следовательно, если уравнение имеет положительное решение, то оно имеет и отрицательное решение (и наоборот). Поэтому единственным решением может быть только x =0.  Сначала подставим x =0  и найдём, при каких a  это значение является решением:

        √---
a= f(0)−  324= 15− 18= −3

Теперь проверим, что при a= −3  у уравнения

        ∘-2-----
f(x)+ 3=  x + 324

нет других решений, кроме x =0.  Тут уже поможет метод оценки. Правая часть не меньше √324= 18,  причём равенство достигается только при x= 0.  А вот левая часть не больше 18, потому что

     ∘ -2-------
f(x)=   g(x)− 400≤ 15,

так как

      ∘ ------2
|g(x)|≤   400 +15 = 25,

ведь по неравенству треугольника

|19+ 2cos2x +4cosx|≤ |19|+ |2cos2x|+ |4cosx|≤ 19+ 2+ 4=25

Итак, при a= −3  действительно единственное решение, при других значениях единственность невозможна.

Ответ: -3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!