Тема Звезда (только часть по математике)

Стереометрия на Звезде

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела звезда (только часть по математике)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#83740

Параллелограмм ABCD  является основанием пирамиды SABCD.  Точки M,N  и P  лежат на рёбрах SA,SD  и SC  соответственно, причём

SM :MA = 1:2, SN :ND = 1:3, SP :PC =1 :4

В каком отношении плоскость MNP  делит ребро SB?

Источники: Звезда - 2024, 11.1 (см. zv.susu.ru)

Подсказки к задаче

Подсказка 1

Построить точку пересечения плоскости MNP и ребра SB сразу так сложно. Кажется, не хватает какой-нибудь точки на MP, чтобы провести через неё и N прямую, пересекающую ребро SB в искомой точке (пусть K).

Подсказка 2

Да это же точка, получаемая пересечение MP и SO, где SO — пересечение плоскостей BSD и ASC, назовём её Т. Точку ввели, а как она делит SO — не узнали. А хотелось бы, потому что её можно рассмотреть и для △ASC (а мы знаем про то как делят его стороны M и P), и для △BSD (содержащий интересующую нас точку K).

Подсказка 3

Отношение ST : NO можно найти, рассмотрев △ASC. А ещё же у нас есть отношение AO : OC (подумайте, чем является точка O для основания). Часто, когда мы видим отношения отрезков, хочется применить теорему Фалеса, только вот нам не хватает несколько параллельных прямых... Какие можно провести, чтобы использовать оба упомянутых отношения на сторонах SA и AC?

Подсказка 4

В предыдущей подсказке попробуйте провести прямые из A и O параллельно MP. С помощью теоремы Фалеса можно найти отношение ST : NO. Если Вы всё правильно посчитали, то не составит труда, используя уже упомянутую теорему, найти отношение SK : KB.

Показать ответ и решение

Пусть плоскости BSD  и ASC  пересекаются по прямой SO.  Рассмотрим треугольник ASC.  Пусть T = MP ∩ SO.

PIC

В треугольнике ASC  проведём прямые AL  и OQ  параллельные MP.

PIC

По теореме Фалеса имеем

SPPL-= SMMA- = 12, LQQC-= AOOC- =1

Учитывая, что SP :PC =1 :4,  получаем, что

ST-= 1
TO   3

Пусть K = NT ∩ SB.  Так как

SN :ND = ST :TO =1 :3,

то в силу теоремы Фалеса прямые BD  и NK  параллельны, и, следовательно,

SK :KB  =1 :3
Ответ: 1:3

Ошибка.
Попробуйте повторить позже

Задача 2#69375

Боковые рёбра треугольной пирамиды попарно перпендикулярны, а стороны основания равны √61-  , √52-  , √41  . Центр сферы, которая касается всех боковых граней, лежит на основании пирамиды. Найдите радиус этой сферы.

Источники: Звезда - 2023 (см. zv.susu.ru)

Подсказки к задаче

Подсказка 1

Для начала, можно найти оставшиеся длины ребер: у нас же они перпендикулярны, а значит, можно применить теорему Пифагора!

Подсказка 2

С длинами разобрались, а что делать с радиусом вписанной сферы? На плоскости у нас есть полезный факт, что r = S/p, где S - площадь треугольника, а p - полупериметр. Если вы помните доказательство этого факта, то проведите аналогичные рассуждения здесь)

Подсказка 3

Если не помните, то сделайте вот что: вот у нас есть центр сферы O. Проведем отрезки из O ко всем вершинам пирамиды. Тогда он разбивается на 3 маленьких тетраэдра. Тогда его объем - сумма объемов маленьких тетраэдров. А чему равны объемы маленьких тетраэдров?)

Подсказка 4

А они равны 1/3 × r × (площадь грани). Причем площадь грани очень легко посчитать т.к. боковые ребра - перпендикулярны, и их длины мы знаем! Осталось ещё вспомнить формулу объема пирамиды у которой боковые ребра перпендикулярны, и дело в шляпе!

Показать ответ и решение

PIC

Обозначим основание пирамиды — ABC  , вершину пирамиды — D  , центр сферы — O  , радиус сферы — r  . Пусть      √--     √ --     √--
AB =  41,BC =  61,AC =  52  . Обозначим AD = x,BD = y,CD = z  .

Так как радиус, проведённый в точку касания сферы и плоскости, ортогонален плоскости, имеем:

VABCD =VABDO + VBCDO +VACDO =

= 13SABD ⋅r+ 13SBCD ⋅r+ 13SACD⋅r=

    (             )
= 1r 1xy+ 1yz+ 1zx
  3  2    2    2

С другой стороны, так как боковые рёбра попарно перпендикулярны, то

        1
VABCD = 6xyz

Поэтому

       xyz
r= xy-+yz+-xz

Числа x,y,z  находятся из системы уравнений:

(
|||{ x2+y2 = 41
  x2+z2 = 52
|||( y2+z2 = 61

Складывая уравнения системы и деля на два, получим:

 2   2  2
x + y +z = 77

откуда x2 = 16,y2 = 25,z2 =36  . Тогда

r= ---4-⋅5-⋅6-----= 60-
   4⋅5+4 ⋅6 +5⋅6   37
Ответ:

 60
37

Ошибка.
Попробуйте повторить позже

Задача 3#74591

Плоскость, параллельная основанию ABC  пирамиды MABC  , отсекает пирамиду MA B C
   1 1 1  (вершины A ,B ,C
 1  1 1  расположены на рёбрах MA,MB, MC  соответственно). Объём пирамиды MABC  равен 375 , объём пирамиды MA1B1C1  равен 81. Найдите объём пирамиды MAB1C1  .

Источники: Звезда - 2022 (см. zv.susu.ru)

Подсказки к задаче

Подсказка 1

Т.к. плоскости (A₁B₁C₁) и (ABC) параллельны, то MA₁/MA=MB₁/MB=MC₁/MC=k. Тогда объемы тетраэдров MA₁B₁C₁ и MABC относятся как коэффициент подобия k в кубе. Чему же равен k?

Подсказка 2

Верно, 3/5! Мы видим, что объем тетраэдра MAB₁C₁ состоит из объемов тетраэдров MA₁B₁C₁ и AA₁B₁C₁, у которых есть общее основание. Как же тогда относятся их объемы...

Подсказка 3

Они относятся как высоты, которые, в свою очередь, относятся как MA₁/A₁A=3/2. Посчитайте объем AA₁B₁C₁ и завершите решение!

Показать ответ и решение

PIC

Так как плоскость (A1B1C1)  параллельна плоскости основания ABC,  то

MA1-= MB1- = MC1 = k
MA    MB     MC

Пирамиды MA1B1C1  и MABC  подобны, тогда их объёмы относятся как коэффициент подобия k  в кубе:

VMA1B1C1 = 81-= 27-=k3  =⇒   k= 3
 VMABC     375   125              5

Пусть MA  =3x,
  1  тогда A A= 2x.
 1  Заметим, что объём пирамиды MAB  C
    1 1  складывается из двух кусочков: MA  B C ,
   1 1 1  объём которой мы знаем, и AA1B1C1.  Причём эти 2 пирамиды имеют общее основание A1B1C1,  тогда их объёмы относятся так же, как относятся их высоты к (A1B1C1).  А высоты относятся так же, как относятся MA1  и AA1,  то есть высота пирамиды MA1B1C1  больше высоты пирамиды AA1B1C1  в MA1-  3x-  3
AA1 = 2x = 2.  Значит,

VAA1B1C1  2                 2
VMA1B1C1 = 3 =⇒   VAA1B1C1 = 3 ⋅81= 54

VMAB1C1 =VMA1B1C1 +VAA1B1C1 = 81+ 54 =135
Ответ: 135

Ошибка.
Попробуйте повторить позже

Задача 4#95856

В правильной четырёхугольной пирамиде ABCDS  площадь основания совпадает с площадью боковой грани и равна 1.  M  — точка пересечения медиан грани CDS  . Точка N  лежит на прямой AM  и AN :NM = 3:4.  Найдите сумму расстояний от точки N  до всех граней пирамиды.

Источники: Звезда - 2021, 11.2 (см. zv.susu.ru)

Показать ответ и решение

PIC

Из условия задачи сторона основания пирамиды равна 1  , апофема боковой грани — 2.  Тогда высота пирамиды    ∘----   √--
h=  4 − 14 =-125 .  Объём пирамиды ABCDS  равен     √--
V = -165.

С другой стороны, объём пирамиды можно найти как сумму объёмов пяти пирамид, вершина которых — точка N  , а основания — грани пирамиды ABCDS  . Тогда V = 13 ⋅(h1+ h2+h3+ h4+ h5)⋅1  , где h1,h2,h3,h4,h5  — расстояния от точки N  до граней пирамиды ABCDS  (или высоты маленьких пирамид). Приравнивая объёмы, получаем

                   √15-
h1+ h2+ h3+ h4 +h5 = 2

Заметим при этом, что сумма расстояний не зависит от расположения точки внутри данной пирамиды.

Ответ:

 √15
  2

Рулетка
Вы можете получить скидку в рулетке!