Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бельчонок
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74652

Найдите все натуральные числа a,  для которых число

a+1 +√a5-+2a2+-1
-----a2+-1------

также является натуральным.

Источники: Бельчонок-2022, 11.4 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Обозначим a+ 1= b,√a5-+2a2+-1= c  . В числителе записано

      c2-− b2
c+ b=  c− b

На a2+ 1  должно делиться

c2− b2 = a5+ 2a2+ 1− (a +1)2 = a5+a2− 2a≡a2+1 −a − 1

При a> 1  модуль остатка меньше  2
a +1,  поэтому остаток не может делиться на  2
a + 1  ни при каком a> 1.  Уравнению удовлетворяет единственное значение a= 1.

Ответ: 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!