Комбинаторика на ЮМШ
Ошибка.
Попробуйте повторить позже
На карточках написали по
чисел, сумма на каждой карточке равна
. Оказалось, что любой набор из
неотрицательных чисел с
суммой 1 можно получить, уменьшив некоторые числа на одной из карточек (наборы неупорядоченные). Пусть
— наименьшее
,
при котором это возможно.
2. Докажите, что найдется такое, что
.
4. Ограничена ли последовательность ?
Источники:
1. Пример: наборы ( ) и (
).
Оценка. Ясно, что должен быть набор, содержащий 1, чтобы мажорировать ( ), и набор, в котором оба числа больше
, чтобы
мажорировать
. Если это одна и та же пара, то сумма уже
. Если разные, то посмотрим на набор
: чтобы набор
мажорировал его, должно быть
, а чтобы набор с парой чисел, больших
мажорировал — это должен быть набор, как минимум
. Легко видеть также, что указанный набор подходит.
_________________________________________________________________________________________________________________________________________________________________________________
2. Рассмотрим все возможные способы записать число в виде суммы положительных рациональных дробей со
знаменателем
(не обязательно несократимых). Очевидно, что это количество конечно, его и обозначим за
— записав все
соответствующие наборы на карточки, убедимся, что такой набор карточек подходит. Действительно, рассмотрим любой набор с
единичной суммой. Заменим в нём каждое число на ближайшую сверху дробь со знаменателем
. При таком округлении
сумма увеличится не более, чем на
, значит получится один из наших наборов или аналогичный
набор с меньшей суммой. Произвольно увеличив числители некоторых дробей так, чтобы сумма стала равной
,
мы превратим набор в числа на одной из карточек, которая, таким образом, мажорирует исходный набор с единичной
суммой.
_________________________________________________________________________________________________________________________________________________________________________________
3. Рассмотрим, например, следующую пару наборов:
Сумма в каждом равна , это даже меньше,чем 1,71 , а
. Проверим, что эта пара наборов мажорирует все
нужные четвёрки. Ясно (*), что в упорядоченной тройке с суммой
среднее число - не больше, чем
, а малое - не
больше, чем
; аналогичное верно для четвёрок. Действительно, если максимальное число в четвёрке больше
, то
второе по величине - не больше,чем
, третье не больше
а самое маленькое не больше
, значит такая четверка
мажорируется вторым набором. Аналогично, если максимальное число не больше, чем
, то оно мажорируется первым
набором.
_________________________________________________________________________________________________________________________________________________________________________________
4. Вычислим . Как уже отмечалось, для всякого
должна быть карточка, в которой
-ое по величине число не
меньше, чем
. Если карточка всего одна, то сумма на этой карточке, таким образом, не меньше
. С другой
стороны, карточка
, очевидно, подходит, т.к. в наборе с единичной суммой
-ое по величине число не больше
, так что
. Теперь рассмотрим произвольную пару натуральных чисел
, соотношение
между которыми мы уточним позднее, и предъявим два набора, вдвоём мажорирующих все наборы с единичной суммой: а
именно
и
Действительно, рассмотрим любой упорядоченный по убыванию набор ( ) с единичной суммой. Ясно, что
при любом
и поэтому первая карточка мажорирует любой набор с единичной суммой, в котором все числа не превосходят
.
Пусть, напротив, . Тогда для любого
имеем
Поэтому любой набор с мажорируется второй из наших карточек.
Осталось убедиться, что разность между и максимумом из сумм в этих двух наборах может быть сделана (при
подходящем выборе
и
) сколь угодно большой. Действительно, сумма на первой карточке отличается от
на
и эта величина при достаточно больших может быть сделана, как известно, сколь угодно большой. Теперь зафиксируем произвольное
и посмотрим на вторую карточку: сумма чисел на ней меньше, чем
, на
Поскольку выражение в скобках при фиксированном и неограниченном
может быть сделано сколь угодно большим, то можно
выбрать
так, что эта разность будет больше разности между
и первой суммой, которая одним лишь выбором
может
быть сделана сколь угодно большой для произвольного
. Утверждение доказано, последовательность из условия не
ограничена.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!