Комбинаторика на ЮМШ
Ошибка.
Попробуйте повторить позже
Дан граф на
вершинах: сопоставим каждой вершине
переменную
. Пусть
— множество остовных
деревьев графа
(то есть поддеревьев, содержащих все вершины). Рассмотрим остовный многочлен от
переменных
Назовем связный граф хорошим, если раскладывается на линейные множители (в частности, если
— тождественный
ноль), иначе плохим.
1. Найдите , где
— полный граф на 4 вершинах.
2. Докажите, что цикл на пяти вершинах является плохим графом.
3. Пусть — хороший граф,
— некоторое подмножество его вершин. Граф
состоит из всех вершин, лежащих в
, и всех ребер
графа
, соединяющих эти вершины. Докажите, что граф
тоже хороший.
4. Назовём раздвоением вершины операцию, добавляющую в граф вершину
, соединенную ровно с теми же вершинами, что и
.
Докажите, что граф, получающийся из одной вершины операциями добавления висячей вершины, раздвоения вершины с добавлением ребра
и раздвоения вершины без добавления ребра
, является хорошим.
Источники:
Пункт 1, подсказка 1
Нас просят найти значения многочлена для графа К₄. Может, стоит подумать о его остовных деревьях?
Пункт 1, подсказка 2
В К₄ бывает только 2 вида остовных деревьев. Это либо цепь длины 4, либо три вершины, "висящие" на четвертой. А что нам дадут данные деревья в основный многочлен?
Пункт 1, подсказка 3
Остовные деревья первого вида дадут xᵢxⱼ, а второго - (xᵢ)², где i - вершина остова. Осталось только аккуратно записать искомый многочлен.
Пункт 2, подсказка 1
Для начала, как и в прошлом пункте, рассматриваем остовные деревья и записываем многочлен.
Пункт 2, подсказка 2
Проверьте, у Вас должен был получиться такой многочлен: x₁x₂x₃ + x₂x₃x₄ + x₃x₄x₅ + x₄x₅x₁ + x₅x₁x₂. Вспомните, какой граф мы называем "плохим"?
Пункт 2, подсказка 3
Заметим, что наш многочлен линеен по каждой переменной. Попробуйте показать, что у нас каждая переменная будет "жить" лишь в одной из скобок.
Пункт 2, подсказка 4
Убедитесь, что переменные разбиваются только на скобки вида 2-2-1 и 3-1-1. Что из этого следует?
Пункт 3, подсказка 1
Давайте подумаем, как связность U будет влиять на остовный многочлен?
Пункт 3, подсказка 2
Если U несвязно, то в качестве многочлена мы получим 0. А можем ли мы при связном U выкидывать по одной вершины с сохранением связности?
Пункт 3, подсказка 3
Давайте "подвесим" граф за множество U и будем удалять вершины, начиная с самого нижнего уровня. Что тогда получится?
Пункт 3, подсказка 4
Удалим вершину v. Это равносильно подстановке 0 в xᵥ. Какой вывод можно получить?
Пункт 3, подсказка 5
У нас получится, что все слагаемые c xᵥ обнуляются, следовательно, останутся лишь те, где v - висячая вершина. Как устроены такие деревья?
Пункт 3, подсказка 6
Мы выбираем дерево в графе G\{v}, а потом одна из вершин окрестности v соединяется с v. Какой вид у нас примет тогда остовный многочлен?
Пункт 3, подсказка 7
Докажите, что многочлен останется раскладываемым на множители.
Пункт 4, подсказка 1
Пусть G₁ - граф, получаемый из G на n вершинах добавлением вершины vₙ₊₁, как в операции раздвоения вершины. Давайте для начала подумаем про остовный многочлен графа G. Надо понять, как устроены деревья этого графа.
Пункт 4, подсказка 2
Возьмем лес на всех вершинах, кроме vₙ. Что обязательно должно быть в каждой его компоненте?
Пункт 4, подсказка 3
В каждой компоненте должна быть хотя бы одна вершина из окрестности vₙ в графе G. Как должна быть связана вершина vₙ с этим множеством?
Пункт 4, подсказка 4
vₙ будет соединена ровно с одной такой вершиной из каждой компоненты. Как тогда может быть представлен наш остовный многочлен?
Пункт 4, подсказка 5
Обозначьте за L множество таких лесов, за t(K) - число компонент связности в лесу K, за A₁, A₂, ... , Aₜ - множества пересечений окрестности вершины v в графе G с компонентами связности леса K. Запишите многочлен, пользуясь этими обозначениями.
Пункт 4, подсказка 6
Теперь посмотрим на деревья в графе G₁. Какой лес мы возьмем там?
Пункт 4, подсказка 7
Мы вновь возьмем лес, содержащий все вершины, кроме vₙ, но теперь еще не будем брать вершину vₙ₊₁. Снова подумаем, что должно быть в каждой его компоненте.
Пункт 4, подсказка 8
Как и ранее, в каждой компоненте должна быть хотя бы одна вершина из окрестности vₙ в графе G, после чего одна из долей будет соединена с вершинами vₙ и vₙ₊₁, а все остальные доли - лишь с одной из них. Теперь запишите и преобразуйте остовный многочлен графа G₁, используя те же обозначения, что и для графа G.
Пункт 4, подсказка 9
У Вас должно получиться, что для графа G₁ остовный многочлен от (x₁, x₂, ..., xₙ₊₁) равен остовному многочлену для графа G от (x₁, x₂, ..., xₙ + xₙ₊₁), умноженному на сумму вершин из окрестности vₙ в графе G.
Пункт 4, подсказка 10
Давайте теперь рассмотрим граф G₂, получаемый из G₁ соединением вершин vₙ и vₙ₊₁. Может быть, леса G₁ и G₂ похожи?
Пункт 4, подсказка 11
Мы снова рассмотрим лес, как с графом G₁, но теперь либо не будем проводить ребро между vₙ и vₙ₊₁, либо проведем и соединим каждую из долей ровно с одной из вершин. Какие выводы можно сделать из этих построений?
Пункт 4, подсказка 12
В первом случае мы получим такое же слагаемое, как в G₁. Тогда что нам дает сумма таких слагаемых?
Пункт 4, подсказка 13
Эти слагаемые дадут нам остовный многочлен графа G₁. Осталось только разобраться с суммой вторых слагаемых. Это можно сделать при помощи тех же обозначений, что и для графа G.
1. В полном графе на четырех вершинах есть только 2 вида остовных деревьев: 1) цепь длины 4; 2) три вершины, "висящие"на четвертой.
Каждое дерево первого вида даст в остовный многочлен одночлен ,
, причем каждый одночлен будет представлен 2
раза.
Каждое дерево второго вида даст в остовный многочлен одночлен , где
— "вершина"остова.
В итоге получим многочлен:
________________________________________________________________________________________________________________________________________________________________________________________________________
2. Распишем . Поскольку многочлен
линеен по каждой переменной, получаем,
что каждая из переменных живет только в одной из скобок. Тогда переменные вынуждены разбиться на скобки 2-2-1 или 3-1-1, что дает нам
не более четырех мономчиков, противоречие.
_________________________________________________________________________________________________________________________________________________________________________________
3. Давайте сначала заметим, что можно последовательно выкидывать вершины по одной с сохранением связности, если связно. (Если
несвязно, то просто 0 получится и все).
Для этого нужно подвесить за и поочередно удалять вершины с самого нижнего уровня. Теперь нужно понять, что при удалении
только одной вершины
граф остается хорошим. Для этого подставим 0 в
. Получим, что все слагаемые, в которые
входило в хотя
бы первой степени, обнулились, а значит остались в точности те, где
— висячая вершина. А все такие деревья устроены так: выбрано
дерево в графе
, и потом одна из вершин из окрестности
соединена с
. Тогда многочлен после подстановки нуля равен
. Подстановка нуля сохраняет раскладываемость на множители, значит
тоже раскладываемый,
значит, при удалении вершины
граф останется хорошим.
_________________________________________________________________________________________________________________________________________________________________________________
4. Сначала докажем вспомогательный факт про такой тип графов.
Лемма о раздвоении без добавления ребра. Пусть дан граф на
вершинах. Рассмотрим граф
, полученный из
добавлением вершины
и соединением ее со всеми вершинами из
, но не самой
. Тогда
Доказательство. Давайте заметим, что любое дерево в графе устройство следующим образом — на всех вершинах, кроме
,
берется некоторый лес, такой, что в каждой компоненте есть хотя бы одна вершина из
, и потом вершина
соединяется с ровно
одной вершиной из каждой компоненты. Обозначим за
множество всех таких лесов, за
— число компонент связности в лесу
, и назовем
пересечения множеств
с компонентами связности леса
. Тогда из рассуждений
выше
Теперь давайте поймём, как устроены деревья в . Там мы тоже берём лес, который содержит все вершины, кроме
,
, и
такой, что каждая его компонента содержит хотя бы одну вершину из
, после чего одна из долей соединяется с обеими вершинами
из
и
, а каждая из остальных
долей — с ровно одной из этих вершин. Тогда в тех же обозначениях получается,
что
Теперь очевидно, что второй сомножитель равен , и лемма доказана.
Лемма 2 (Лемма о раздвоении с добавлением ребра). Пусть дан граф . Рассмотрим граф
, получаемый из
добавлением вершины
и соединением её со всеми вершинами из
, а также с самой
. Тогда
Доказательство. Пусть — граф из леммы
Мы в лемме
уже выяснили как устроены деревья в графе
поэтому нужно
разобраться с тем, как они устроены в
. Заметим, что они устроены так: мы снова берем лес с такими же условиями, а дальше делаем
одно из двух — либо не проводим ребро между
и
, и это слагаемое такое же как в
, либо проводим, и тогда каждую из
долей соединяем с ровно одной из этих вершин. Стало быть, сумма всех первых слагаемых даст нам
, а сумма вторых
равна
Тогда получается, что
доказали требуемое.
Ошибка.
Попробуйте повторить позже
Источники:
Пункт 1), подсказка 1
Чтобы начать расставлять числа, нужно как-то зафиксировать хоть что-то. Попробуйте зафиксировать 1 и понять, почему так можно делать. Как расставлять дальше?
Пункт 1), подсказка 2
Для 2 у нас есть 3 варианта. У каждого из них свои ограничения на следующие клетки, которые несложно разобрать по отдельности.
Пункт 2), подсказка 1
Попробуем расставлять числа по возрастанию, тогда будет проще рассуждать. Если мы поставим 1 в нижний левый угол, то какова доля клеток, куда мы можем поставить 2? А 3? Как выглядит общий случай?
Пункт 2), подсказка 2
Доля мест, куда мы можем поставить 2, не больше чем 2/а(почему?). Подумаем о том, как будет меняться такая доля с каждый новым числом.
Пункт 2), подсказка 3
С каждым новым числом общее коколичество свободных мест уменьшается на 1, а количество подходящих увеличивается максимум на (а-1). С помощью неравенства можно понять, до какого числа мы можем считать долю как (i+1)/a. Теперь у нас есть количество вариантов для каждого числа, каким тогда будет общее мест?
Пункт 2), подсказка 4
Произведение количества вариантов для каждого числа! Осталось лишь доказать, что такое число не больше 100 * (a^2)!/(2^a).
Пункт 3), подсказка 1
Отлично, количество вариантов уже посчитано в предыдущем пункте. Теперь нужно доказать, что это число больше того, что нас просят в этот раз. Попробуем доказать по индукции по а!
Пункт 3), подсказка 2
Базу проверить несложно. Теперь попробуем доказать, что (a+1)^(a-1) <= a^(a-2)*8a. Для этого попробуем преобразовать неравенство, тогда у нас получится найти связь с числом e!
1. Заметим, что при перестановке столбцов и строк в расстановке чисел она всё ещё будет удовлетворять условию. Значит,
можно посчитать число способов с в нижнем левом угле и затем умножить его на
. Разберём возможные позиции для
двойки:
2 | ||
1 |
(остальные числа можем поставить как угодно)
1 | 2 |
(нам нельзя ставить
в верхний правый угол. выбираем для неё одно из трёх других мест и расставляем остальные как
угодно)
1 | 2 |
(симметричен предыдущему случаю)
2. Будем расставлять числа по возрастанию. Переставим столбцы и строки так, чтобы находилась в левом нижнем углу. Рассмотрим
долю мест, на которые мы можем поставить
. Эта доля
. Для
эта доля будет
. И в общем
случае: с каждым новым числом общее количество свободных мест уменьшается на 1, а количество подходящих увеличивается максимум на
. Сравним:
что при верно.
Тогда общее количество мест
Докажем, что
что равносильно
По неравенству о средних:
Тогда
3. Докажем, что
что равносильно
Базу легко проверить
По предположению индукции
а для перехода надо доказать
Тогда докажем
что равносильно
а это уже известное неравенство (можно оценить даже не числом 8, а числом Эйлера - числом ), которое тоже легко проверить по
индукции для любого натурального
4. Будем расставлять числа по возрастанию. Пусть мы начали с какой-то из двух строк. Нам интересен первый момент, когда мы “перескочим” на другую, так как после этого остальные числа можно расставить как угодно.
… | k | … | |||
1 | 2 | 3 | … | … |
Пусть мы “перескочили” на числе . Посчитаем количество таких расстановок: мы выбираем одну из двух строк начальной,
затем расставляем числа от
до
в этой строке, затем выбираем, куда поставить
— для этого есть только
способов, так как мы должны поставить его в один столбец с любым из
чисел. Все остальные числа можем расставить как
угодно:
Таким образом,
Что делать с такой суммой не очень понятно, хочется выразить её через — с ними мы умеем работать, то есть мы хотим получить
выражение вида
:
Осталось посчитать эту сумму. Распишем её:
Пусть у нас есть игроков, которые упорядочены по убыванию своей силы. мы выбираем среди них команду из
игроков и
капитана, который должен быть сильнее всех игроков. С одной стороны, мы можем просто набрать команду из
игроков и
назначить капитаном самого сильного из них. Это же число способов можно посчитать по-другому: выберем самого сильного
после капитана участника команды. Пусть он имеет номер
(то есть сильнее него ровно
человек). Тогда у нас
есть
способов выбрать капитана, и потом нам нужно набрать команду из
человека из
. Получается,
что
Ошибка.
Попробуйте повторить позже
Вася посмотрел на граф на
вершинах и поставил на каждую вершину
переменную
После чего рассмотрел
выражение
Пусть и
— минимум и максимум
(a) Пусть степень каждой вершины в графе равна Найдите
(b) Докажите, что вершины графа можно покрасить в
цвет, так что любые две соседние вершины получат разные
цвета.
(c) Пусть — максимум выражения
при неотрицательных
с суммой
Докажите, что
где — максимальный размер множества вершин графа
попарно соединенных ребрами.
Источники:
(a)
Оценка. Занесём 2 в числитель и оценим каждое слагаемое следующим образом
Получим
Так как у каждой вершины степень у каждой вершины в графе равны то каждая
в числителе встретиться ровно
раз,
следовательно
Пример. Поставим во все вершины получим
(b) Предположим, что это не так, то есть граф так покрасить нельзя. Тогда по теореме Брукса найдётся подграф, в
котором степени вершин хотя бы Поставим в вершины этого подграфа
а во все остальные вершины графа
Тогда значение выражения
станет равным
а это противоречит тому, что
— максимум выражения
(c) Кликой графа называется подмножество его вершин, любые две из которых соединены ребром. Аналогично определяется антиклика
Пример. Найдём в графе максимальную клику, в его вершины поставим а в остальные
Оценка.
Рассмотрим расстановку, на которой достигается Если там есть вершина с 0, удалим её. По предположение
если максимальная антиклика не уменьшилась, и
если максимальная антиклика уменьшилась. Таким образом сделаем все числа ненулевыми.
Обозначим — сумму чисел в смежных с
вершинах. Заметим, что если
и
— несмежные вершины и
то можно
заметить
на
Общая сумма не измениться, а
увеличиться, противоречие. Следовательно, если
и
— несмежные
вершины, то
Рассмотрим антиграф, проверим два случая:
1) Если он связен. Значит, для любых вершин и
обозначим это число за
Следовательно по предположению
Рассмотрим вершину максимальной антиклики.
Следовательно, число в плюс в вершинах, не смешных с
меньше
Просуммируем по врем вершинам максимальной антиклики.
Мы посчитали каждое число неменее 1 раза, значит сумма всех меньше, чем
. Противоречие, следовательно, такое
невозможно.
2) Антиграф не связен.
Ошибка.
Попробуйте повторить позже
На карточках написали по
чисел, сумма на каждой карточке равна
. Оказалось, что любой набор из
неотрицательных чисел с
суммой 1 можно получить, уменьшив некоторые числа на одной из карточек (наборы неупорядоченные). Пусть
— наименьшее
,
при котором это возможно.
2. Докажите, что найдется такое, что
.
4. Ограничена ли последовательность ?
Источники:
Пункт 1, подсказка 1
Для начала попробуйте подобрать такие наборы, у нас 2 карточки, на каждой по 2 числа.
Пункт 1, подсказка 2
Убедитесь, что наборы (1; 1/4) и (3/4; 1/2) подходят. Попробуйте провести оценку. Например, обязательна ли нам единица в одной из пар?
Пункт 1, подсказка 3
Набор с единицей должен быть, поскольку нам надо мажорировать (1; 0). Какой еще набор нам надо мажорировать и какие тогда карточки должны быть?
Пункт 1, подсказка 4
Нам также надо мажорировать (1/2; 1/2). Для этого на одной из карточек должны быть числа, большие 1/2. Что будет, если рассмотренные пары чисел с карточек совпадают?
Пункт 1, подсказка 5
Тогда их сумма — 3/2. Если это разные пары, посмотрите на набор (3/4; 1/4).
Пункт 1, подсказка 6
Для того, чтобы набор (1; x) его мажорировал, x должен быть больше либо равен 1/4. Осталось понять, какой набор нужен, чтобы набор с парой чисел, больших 1/2, мажорировал, и убедиться, что указанный пример подходит.
Пункт 2, подсказка 1
Попробуйте посмотреть, как можно записать число 1 + 10⁻¹⁰⁰ в виде суммы дробей.
Пункт 2, подсказка 2
Давайте добавим, что дроби у нас будут положительные и со знаменателем 10²⁰⁰. Что можно сказать о количестве таких записей?
Пункт 2, подсказка 3
Оно будет конечно. Тогда давайте обозначим его за n и запишем на карточки все соответствующие наборы. Подойдут ли нам такие карточки?
Пункт 2, подсказка 4
Рассмотрите произвольный набор с суммой 1 и замените в нем каждое число на ближайшую сверху дробь со знаменателем 10²⁰⁰. На сколько при округлении увеличится сумма?
Пункт 2, подсказка 5
Сумма увеличится не более, чем на 10¹⁰⁰ ⋅ (1 / 10²⁰⁰) = (1 / 10¹⁰⁰). Что мы тогда получим?
Пункт 2, подсказка 6
Мы получим один из наших наборов или аналогичный набор с меньшей суммой. Как можно во втором случае преобразовать набор, чтобы получить числа с одной из карточек?
Пункт 2, подсказка 7
Можем увеличить числители некоторых дробей, чтобы сумма стала равной 1 + 10⁻¹⁰⁰. Осталось сделать вывод про мажорируемость.
Пункт 3, подсказка 1
Давайте сначала придумаем какой-то пример и прикинем возможные значения a(2,4).
Пункт 3, подсказка 2
Рассмотрите наборы (21/34; 1/2; 1/3; 1/4) и (1; 13/24; 13/68; 13/102). Чему равны их суммы? А чему равен √3?
Пункт 3, подсказка 3
Сумма в каждом наборе меньше 1,71, а √3 = 1,73... . Попробуйте проверить, что эта пара наборов мажорирует все четверки.
Пункт 3, подсказка 4
Пусть у нас есть упорядоченная тройка с суммой x. Что можно сказать про её среднее и меньшее числа?
Пункт 3, подсказка 5
Среднее число будет не больше x/2, а малое — не больше x/3. Распространите это наблюдение на четвёрки. Посмотрите на наборы, которые мы привели ранее.
Пункт 3, подсказка 6
На самом деле, аналогичное верно для четвёрок. Если максимальное число в четверке больше 21/34, то второе по величине будет не больше 13/34. Продолжите оценки на числа четвёрки и докажите, что приведённые 2 набора действительно мажорируют все четвёрки.
Пункт 4, подсказка 1
Нам нужно найти разность между двумя значениями функции a. Давайте для начала попробуем посчитать a(1,k). Вспомните, что мы знаем из прошлых пунктов о числах l≤k.
Пункт 4, подсказка 2
Для каждого такого l должна быть карточка, на которой l-ое по величине число не меньше, чем 1/l. Предположим, что такая карточка одна. Что можно сказать о сумме её чисел?
Пункт 4, подсказка 3
Сумма ее чисел будет не меньше 1 + 1/2 + ... + 1/k. А подойдет ли нам такая карточка?
Пункт 4, подсказка 4
Заметим, что в наборе с единичной суммой l-ое по величине число не больше 1/l, следовательно, карточка подойдет. А чему тогда будет равно a(1,k)?
Пункт 4, подсказка 5
a(1,k) = 1 + 1/2 + ... + 1/k. Давайте теперь рассмотрим произвольную пару натуральных чисел l < k и попробуем предъявить 2 набора, которые будут зависеть от k и l и мажорировать все наборы с единичной суммой.
Пункт 4, подсказка 6
Рассмотрим произвольный набор a₁ > a₂ > ... > aₖ с единичной суммой. Заметим, что для любого i aᵢ ≤ 1/i. Какой набор тогда будет мажорировать любой набор с единичной суммой, при условии, что все числа не превосходят 1/l?
Пункт 4, подсказка 7
Можно взять такой набор: в нем l раз встретится дробь 1/l, а также будут числа 1/(l + 1), 1/(l + 2), ... , 1/k. Осталось рассмотреть случай, когда a₁ > l. Попробуйте оценить сумму остальных aᵢ.
Пункт 4, подсказка 8
Это единичный набор, следовательно, a₂ + a₃ + ... + aₗ₊ᵢ < 1 - 1/l. Оцените aₗ₊ᵢ.
Пункт 4, подсказка 9
aₗ₊ᵢ ≤ (l - 1) / (l(l + i - 1)). Как, пользуясь этим соотношением, можно задать второй набор?
Пункт 4, подсказка 10
Второй набор будет следующего вида: (1; 1/2; ... ; 1/l; (l - 1) / l²; (l - 1) / (l(l + 1)); ... ; (l - 1) / (l(k - 1)). Попробуйте доказать, что разность между a(1,k) и наибольшей суммой одного из этих наборов может быть сколь угодно большой при правильном выборе l и k.
Пункт 4, подсказка 11
Посчитайте разницу между суммой с первой карточки и a(1,k).
Пункт 4, подсказка 12
Получим 1 + 1/2 + ... + 1/(l - 1) - (l - 1)/l. Заметьте, что эта сумма больше 1/2 + ... + 1/(l - 1).
Пункт 4, подсказка 13
При достаточно больших l эта сумма будет сколь угодно большой. Осталось посмотреть на вторую карточку.
Пункт 4, подсказка 14
У Вас должно получиться, что разность между a(1,k) и суммой чисел со второй карточки больше (1/l) ⋅ (1/(l+1) + 1/(l+2) + ... + 1/(k-1)) - 1. Осталось понять, ограниченно ли это число, и сделать соответствующие выводы.
1. Пример: наборы ( ) и (
).
Оценка. Ясно, что должен быть набор, содержащий 1, чтобы мажорировать ( ), и набор, в котором оба числа больше
, чтобы
мажорировать
. Если это одна и та же пара, то сумма уже
. Если разные, то посмотрим на набор
: чтобы набор
мажорировал его, должно быть
, а чтобы набор с парой чисел, больших
мажорировал — это должен быть набор, как минимум
. Легко видеть также, что указанный набор подходит.
_________________________________________________________________________________________________________________________________________________________________________________
2. Рассмотрим все возможные способы записать число в виде суммы положительных рациональных дробей со
знаменателем
(не обязательно несократимых). Очевидно, что это количество конечно, его и обозначим за
— записав все
соответствующие наборы на карточки, убедимся, что такой набор карточек подходит. Действительно, рассмотрим любой набор с
единичной суммой. Заменим в нём каждое число на ближайшую сверху дробь со знаменателем
. При таком округлении
сумма увеличится не более, чем на
, значит получится один из наших наборов или аналогичный
набор с меньшей суммой. Произвольно увеличив числители некоторых дробей так, чтобы сумма стала равной
,
мы превратим набор в числа на одной из карточек, которая, таким образом, мажорирует исходный набор с единичной
суммой.
_________________________________________________________________________________________________________________________________________________________________________________
3. Рассмотрим, например, следующую пару наборов:
Сумма в каждом равна , это даже меньше,чем 1,71 , а
. Проверим, что эта пара наборов мажорирует все
нужные четвёрки. Ясно (*), что в упорядоченной тройке с суммой
среднее число - не больше, чем
, а малое - не
больше, чем
; аналогичное верно для четвёрок. Действительно, если максимальное число в четвёрке больше
, то
второе по величине - не больше,чем
, третье не больше
а самое маленькое не больше
, значит такая четверка
мажорируется вторым набором. Аналогично, если максимальное число не больше, чем
, то оно мажорируется первым
набором.
_________________________________________________________________________________________________________________________________________________________________________________
4. Вычислим . Как уже отмечалось, для всякого
должна быть карточка, в которой
-ое по величине число не
меньше, чем
. Если карточка всего одна, то сумма на этой карточке, таким образом, не меньше
. С другой
стороны, карточка
, очевидно, подходит, т.к. в наборе с единичной суммой
-ое по величине число не больше
, так что
. Теперь рассмотрим произвольную пару натуральных чисел
, соотношение
между которыми мы уточним позднее, и предъявим два набора, вдвоём мажорирующих все наборы с единичной суммой: а
именно
и
Действительно, рассмотрим любой упорядоченный по убыванию набор ( ) с единичной суммой. Ясно, что
при любом
и поэтому первая карточка мажорирует любой набор с единичной суммой, в котором все числа не превосходят
.
Пусть, напротив, . Тогда для любого
имеем
Поэтому любой набор с мажорируется второй из наших карточек.
Осталось убедиться, что разность между и максимумом из сумм в этих двух наборах может быть сделана (при
подходящем выборе
и
) сколь угодно большой. Действительно, сумма на первой карточке отличается от
на
и эта величина при достаточно больших может быть сделана, как известно, сколь угодно большой. Теперь зафиксируем произвольное
и посмотрим на вторую карточку: сумма чисел на ней меньше, чем
, на
Поскольку выражение в скобках при фиксированном и неограниченном
может быть сделано сколь угодно большим, то можно
выбрать
так, что эта разность будет больше разности между
и первой суммой, которая одним лишь выбором
может
быть сделана сколь угодно большой для произвольного
. Утверждение доказано, последовательность из условия не
ограничена.