Тема . Геометрия помогает алгебре

Задачи на движение: графический подход

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела геометрия помогает алгебре
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80603

В 14:00 из села Верхнее вниз по течению реки в сторону села Нижнее вышел катер «Быстрый». Когда до Нижнего оставалось идти 500 метров, ему навстречу из Нижнего вышел катер «Смелый». В этот же самый момент «Быстрый» развернулся и пошел обратно к Верхнему. В 14:14, когда расстояние по реке от «Быстрого» до Верхнего сравнялось с расстоянием по реке от «Смелого» до «Быстрого», «Смелый» развернулся и направились обратно в Нижнее. В исходные пункты катера вернулись одновременно в 14:18. Найдите расстояние по реке между Верхним и Нижним, если скорости катеров в стоячей воде одинаковые и постоянны.

Источники: ДВИ - 2013, вариант 1, задача 5 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте построим график движения, будем рассматривать расстояние от Верхнего относительно времени.

Подсказка 2

Обозначаем за S расстояние между Верхним и Нижним, а Т — время «Быстрого» вниз по течению, обозначаем на графике всю известную информацию, и пользуемся фактами планиметрии, в том числе подобием треугольников, чтобы выражать те отрезки, которые можем.

Подсказка 3

Находим, какие есть варианты для S и помним о том, что по течению корабли плывут быстрее, чем против, чтобы на основе этого составить строгую оценку!

Показать ответ и решение

Графики движения катеров в осях время и расстояние изображены на рисунке:

PIC

Ломаная ABC  - график движения «Быстрого», а ломаная DEF  «Смелого». Пусть S  расстояние (в километрах) от Верхнего до Нижнего, T  — время (в минутах) движения «Быстрого» вниз по течению. Из подобия треугольников ABC  и DEF  получаем S−S−1∕12= 1188−T  .

Из подобия треугольников CHG  и CBQ  : S1−∕21∕2-= 184−T-  . Из этих равенств получаем S−-1∕2= -18∕8-= ---9-- ⇔ 4(S − 1∕2)2 =9(S− 1)⇔ 4S2 − 13S+ 10= 0
 S−1   S−1∕2  4(S−1∕2)  Значит или S = 2,  или S = 5
   4  . Так каk T  и 18 - Т времена прохождения одного и того же пути по и против течения, то T < 18− T ⇔ T < 9.  Поэтому получаем S−-1∕2= -18-< 2⇔ S > 3
 S−1   18−T         2  .

Ответ: 2 км

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!