Тема . Геометрия помогает алгебре

Увидеть треугольник

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела геометрия помогает алгебре
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#98294

Вычислите

            4
2arctg 2+arcsin5.
Показать ответ и решение

Первое решение.

Обозначим arctg2  через α,arcsin4∕5  через β  . Заметим, что β ∈(0,π∕2)  , a   2     2  (     2 )  2  2
tg β = sin β∕ 1− sin β = 4∕3  , откуда tgβ =4∕3  ; также tgα = 2,α ∈(0,π∕2)  .

Находим:

               2tgα     2⋅2    4
       tg(2α)= 1−-tg2α-= 1−-22-= −3
          -tg(2α)+tgβ-  --−-4∕3+-4∕3--
tg(2α+ β)= 1− tg(2α)tgβ = 1− (− 4∕3)⋅(4∕3) = 0

Наконец, поскольку 0< α< π∕2,0< β <π∕2  , то 0< 2α+ β < 3π∕2  . Значит, 2α+ β = π  .

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Отметим на координатной плоскости точки O(0,0),A(3,0),B(3,4),C(− 5,10)  , D (− 5,0)  . Поскольку угловой коэффициент прямой OB  равняется 4∕3  , а угловой коэффициент прямой BC  равняется − 3∕4  , получаем, что ∠OBC = 90∘ .

В треугольнике OAB :∠OAB = 90∘,AB = 4,BO = 5  ; значит, ∠AOB = arcsin4∕5  . В треугольнике OBC :∠OBC = 90∘,BO = 5,BC = 10  ; значит, ∠BOC  =arctg2  . В треугольнике OCD  :∠ODC  = 90∘ , DO = 5,BC = 10  ; значит, ∠COD = arctg2  .

Таким образом,

arcsin4∕5+2arctg2 =∠AOB  +∠BOC + ∠COD  =∠AOD  =π
Ответ:

 π

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!