Тема . Геометрия помогает алгебре

Увидеть расстояние между точками

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела геометрия помогает алгебре
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#104258

Найти все значения параметра a  , при каждом из которых система уравнений

{ x2 +(2a− 2)x+ a2− 2a− 3= 0
  ∘ -2-------2 ∘ -----2-------2
    x + (y − a) + (x+ 4) + (y − a) = 4

имеет ровно одно решение.

Показать ответ и решение

Левая часть второго уравнения есть расстояние между точками A(0;a)  и B(−4;a)  .

Поскольку расстояние между точками A  и B  равно 4, второе уравнение системы задает отрезок AB  , т. е. множество точек вида (t;a)  , где − 4≤t ≤0  .

Решая первое уравнение как квадратное уравнение относительно x  , находим, что x1 = −a− 1,x2 =− a+3  . Таким образом, первое уравнение задает две вертикальных прямых на плоскости. Для того чтобы система имела ровно одно решение, необходимо и достаточно, чтобы ровно одна из этих двух вертикальных прямых пересекала отрезок AB  .

Первая прямая пересекает AB  при − 4≤ x1 ≤ 0  , т. е. при − 1 ≤a≤ 3  ; вторая прямая - при − 4≤ x2 ≤0  , т. е. при 3≤ a≤ 7  . Следовательно, система имеет ровно одно решение при a∈ [− 1;3)∪(3,7]  .

Ответ:

 [−1;3)∪ (3;7]

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!