Стереометрия на Питергоре
Ошибка.
Попробуйте повторить позже
В тетраэдре середины всех ребер лежат на одной сфере. Докажите, что его высоты пересекаются в одной точке.
Подсказка 1
Давайте для начала разберём короткое условие. Какие выводы из него можно сделать? Середины рёбер, точки лежат на одной сфере... Не забывайте про планиметрию.
Подсказка 2
Да, конечно, если мы соединим середины сторон, то, во-первых, получится параллелограмм, а, во-вторых, к тому же прямоугольник. Первое выполняется из-за средних линий, а второе из-за вписанности. Как же это переносится на тетраэдр?
Подсказка 3
Верно, значит, что противоположные стороны тетраэдра перпендикулярны. Почему же этого достаточно, чтобы высоты тетраэдра пересекались в одной точке? Попробуйте провести вспомогательную хорошую плоскость через какое-то ребро. Дальше задача быстро закончится.
Пусть дан тетраэдр а
— середины ребер
и
соответственно. Тогда прямые
и
параллельны
как средние линии треугольников
и
а прямые
и
параллельны
как средние линии треугольников
и
Отсюда немедленно следует, что
— параллелограмм. Но все его вершины лежат на сфере, поэтому он вписанный, т. е.
— прямоугольник. В силу параллельности сторонам прямоугольника прямые
и
перпендикулярны. Аналогично
и
Докажем, что перпендикулярность противоположных сторон тетраэдра является достаточным условием того, что высоты тетраэдра
пересекаются в одной точке. Построим плоскость, проходящую через ребро перпендикулярно
Высоты тетраэдра, опущенные из
точек
и
лежат в этой плоскости, и значит, пересекаются. Обозначим точку их пересечения через
Высоты из вершин
и
также должны пересекать высоты из вершин
и
но так как они не лежат в плоскости
пересекать их они могут только в точке
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!