Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Алгебраические текстовые задачи на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71524

Бригада рабочих трудилась на заливке катка на большом и малом полях, причем площадь большого поля в 2 раза больше площади малого поля. В той части бригады, которая работала на большом поле, было на 4 рабочих больше, чем в той части, которая работала на малом поле. Когда заливка большого катка закончилась, часть бригады, которая была на малом поле, еще работала. Какое наибольшее число рабочих могло быть в бригаде?

Источники: ОММО-2022, номер 3 (см. olympiads.mccme.ru)

Показать ответ и решение

Обозначим число рабочих на меньшем поле как n,  тогда их количество на большем поле равно n+ 4,  а всего в бригаде 2n+ 4  человека. В условии задачи предполагается, что производительность каждого рабочего одинаковая, обозначим ее a.  Соответственно, производительности каждой части бригад равны an  и a(n+ 4).  Если площадь малого поля S,  то площадь большого равна 2S.  Время, затраченное на выполнение всей работы каждой из бригад, соответственно равно

 S       2S
an  и  a(n-+4)

По условию задачи

-S > --2S--
an   a(n +4)

В силу положительности всех переменных, это неравенство равносильно неравенству

n +4 >2n ⇔ n< 4

Поэтому n ≤3,  следовательно, 2n+ 4≤ 10.  Ситуация равенства, очевидно, возможна: достаточно взять любые положительные S  и a.

Ответ: 10

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!