Тема . Неравенства без логарифмов и тригонометрии

Неравенства с модулями И корнями

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#110253

Решите неравенство

      3∘ x2  6√--2
-------22-−--4x-------≥ 0.
(x2 − 4|x|) − 8x2+ 32|x|− 48

Источники: Физтех 2019, 11.2 (olymp.mipt.ru)

Показать ответ и решение

Рассмотрим знаменатель дроби. Его можно записать в виде

( 2    )2   (2     )
 x − 4|x| − 8x − 4|x| − 48

А если обозначить x2− 4|x|=t,  то в виде

 2
t − 8t− 48= (t− 12)(t+4)

Если вернуться обратно к переменной x,  выходит выражение

(x2− 4|x|− 12)(x2 − 4|x|+ 4)=(|x|− 6)(|x|+ 2)(|x|− 2)2

Итак, исходное неравенство равносильно следующему

    3∘ x2− 3∘2|x|
------2----------2-≥ 0
(|x|− 6)(|x|+2)(|x|− 2)

В этом неравенстве необходимо сравнить дробь с нулём, или, что то же самое, определить знак этой дроби. Поэтому если мы заменим числитель или любой из множителей в знаменателе выражением того же знака, то получим неравенство, равносильное исходному.

Заметим, что знак выражения 3√a −√3b  совпадает со знаком выражения a− b  при любых a  и b;  выражение |a|− b  при b< 0  положительно, а при b>0  его знак совпадает со знаком выражения a2− b2 = (a− b)(a+ b).  Следовательно, неравенство равносильно

    x2
--2-2-−-2|x2|--2 ≥ 0
(x − 36)(x − 4)

---|x|(|x|− 4)--
(x2− 36)(x2− 4)2 ≥ 0

     x2(x− 4)(x+4)
(x−-6)(x+-6)(x−-2)2(x+-2)2 ≥ 0

Метод интервалов, применённый к последнему неравенству, даёт

x∈ (−∞;−6)∪ [−4;−2)∪(−2;2)∪(2;4]∪(6;+ ∞)
Ответ:

 (−∞;− 6)∪[− 4;−2)∪ (− 2;2)∪(2;4]∪ (6;+∞ )

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!