Тема . Неравенства без логарифмов и тригонометрии

Неравенства с модулями И корнями

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#32856

Решите неравенство

√---- |2   | √ ---- |2        |
 9− x⋅|x − 1|≤  9− x⋅|x − 10x+13|.

Источники: ПВГ-2014, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Сразу запишем ОДЗ. Теперь хотелось бы убрать корни и работать только с модулями. Для этого можно отдельно подставить x = 9, далее рассматривать x < 9. При таких условиях корень из (9 - x) больше нуля, а значит, на него можно поделить без изменения знака неравенства.

Подсказка 2

Работать с модулями неудобно, особенно когда внутри стоят не линейные функции: нужно сначала определить промежутки знакопостоянства, а затем раскрывать модули в зависимости от промежутка. Но в данном случае нам повезло, в обеих частях стоят по одному модулю, а значит, они неотрицательны. Тогда можно смело возвести в квадрат! Это равносильное преобразование, поэтому после переноса в одну часть по разности квадратов получим одно неравенство вместо системы, если бы раскрывали модули.

Подсказка 3

Решите полученное неравенство с помощью метода интервалов. Не забудьте учесть ограничение!

Показать ответ и решение

Обе части неравенства определены при 9− x≥ 0  . При x =9  получим верное неравенство 0 ≤0  , так что это значение x  является решением. При x< 9  можем сократить на положительный корень без смены знака неравенства и возвести обе части в квадрат (это будет равносильным переходом, потому что обе части неотрицательны как модули каких-то выражений), после чего воспользоваться формулой разности квадратов:

  2      2              2   2   2         2
|x − 1|≤ |x − 10x +13|⇐⇒ (x − 1) ≤ (x − 10x+ 13)

          2
(10x− 14)(2x − 10x+12)≤ 0

(5x− 7)(x− 2)(x− 3)≤ 0

x∈(−∞; 7]∪[2;3]
       5

Осталось не забыть условие x< 9  , а также внести в ответ отдельно рассмотренное значение x =9  .

Ответ:

 (−∞; 7]∪ [2;3]∪ {9}
     5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!