Последовательности, функции и их свойства на Курчатове (матан...)
Ошибка.
Попробуйте повторить позже
Назовём функцию хорошей, если
определена на отрезке
и принимает действительные значения;
- для всех
верно
Найдите все хорошие функции.
Подсказка 1
Сразу заметим важную вещь: если f(x) - решение, то и f(x) + c будет решением, где c - любая константа, а также -f(x) - решение. Какие удобные значения функции мы тогда можем подобрать?
Подсказка 2
Сразу хочется сделать, чтобы f(0) = 0. Попробуйте подставить туда точки 0 и 1, что тогда выйдет?)
Подсказка 3
Выйдет, что 1 <= |f(1)| <= 1, т.е. |f(1)| = 1. Давайте считать, что f(1) = 1 (т.к. мы все равно можем умножить функцию на минус в случае чего). А теперь подумайте, что можно подставлять, чтобы оценить f(x)?
Подсказка 4
Например, подставим y = 0, и получим, что f(x) <= |f(x)| <= |x| = x, т.е. f(x) <= x. Попробуйте теперь получить обратную оценку и f(x) будет найдена!
Заметим, что вместе с каждой функцией удовлетворяющей условию, ему также удовлетворяют и все функции вида
и
Докажем, что если
и
то при всех
верно
Отсюда и из замечания выше будет следовать
ответ.
Итак, пусть и
. Подставив
, получаем
, то есть
, поэтому
.
Далее для любого
имеем
Итак, и
то есть
Следовательно,
где
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!