Последовательности, функции и их свойства на Курчатове (матан...)
Ошибка.
Попробуйте повторить позже
Последовательность натуральных чисел определяется следующими соотношениями:
где — фиксированное натуральное число.
Сколько существует таких последовательностей, в которых встречается число 2024?
Источники:
Докажем, что для любого целого справедливы следующие формулы:
Будем доказывать эти формулы индукцией по . База
проверяется непосредственно. Предположим, что формулы справедливы
для всех чисел, не больших
, и докажем эти формулы для числа
. Поскольку по предположению индукции
,
последовательно получаем следующие равенства:
Таким образом, наши формулы доказаны. Теперь, используя эти формулы, посмотрим, какие члены нашей последовательности
могут равняться 2024. Ясно, что числа вида и
не могут равняться 2024: числа вида
нечётны, а числа
вида
равны 1 . Далее, числа вида
могут равняться 2024 только при
, что дает нам один пример
последовательности.
Наконец, предположим, что для некоторого целого неотрицательного число
равно 2024 . Мы получаем следующее уравнение:
. Заметим, что сомножитель
дает остаток 3 при делении на 4 , а число 2025 дает остаток 1 при делении на 4.
Значит, число
, во-первых, должно быть делителем числа 2025 , а во-вторых, должно иметь остаток 3 при делении на 4 (т.к.
). Поскольку
, число
имеет вид
, где
и
. Для того, чтобы число
такого вида давало бы остаток 3 при делении на 4 , необходимо и достаточно, чтобы степень
была бы нечетной (поскольку
и
). Получаем ещё 6 возможных значений
. Вместе с вариантом
получаем 7
возможных последовательностей.
Ошибка.
Попробуйте повторить позже
Назовём функцию хорошей, если
определена на отрезке
и принимает действительные значения;
- для всех
верно
Найдите все хорошие функции.
Заметим, что вместе с каждой функцией удовлетворяющей условию, ему также удовлетворяют и все функции вида
и
Докажем, что если
и
то при всех
верно
Отсюда и из замечания выше будет следовать
ответ.
Итак, пусть и
. Подставив
, получаем
, то есть
, поэтому
.
Далее для любого
имеем
Итак, и
то есть
Следовательно,
где
Ошибка.
Попробуйте повторить позже
Даны положительные действительные числа . Известно, что
Докажите, что
Источники:
Если , то всё очевидно. Если
, поделим равенство на
и перенесём
в другую часть, получим
Рассмотрим на координатной плоскости две точки: и
, а также обозначим
тогда
.
Точка с координатами
и
лежит на прямой
.
Но также ясно, что эти три точки лежат на графике функции . Так как эта функция является вогнутой (например, потому, что
её вторая производная отрицательна), то с прямой может пересекаться максимум по двум точкам, а это значит, что какие-то два из трёх
чисел
совпадают:
Ошибка.
Попробуйте повторить позже
Докажите, что существуют такие последовательности натуральных чисел и
что одновременно выполнены следующие
условия:
- последовательности и
являются неубывающими;
- последовательности и
неограниченно возрастают;
- последовательность ограничена.
Источники:
Рассмотрим последовательность . Ясно, что все суммы
ограничены. Будем строить исходные последовательности и
так, чтобы
. Последовательно разобьём
натуральный ряд на отрезки подряд идущих чисел так, что если отрезок начинается с числа
, то его длина равна
. После этого
раскрасим все эти отрезки поочередно в красный и синий цвета.
Теперь зададим последовательность следующим образом:
- если - красное число, то положим
равным числу
;
- если - синее число, то положим
равным
, где
- первое число отрезка, содержащего
.
Последовательность зададим аналогично, но инвертируя цвета:
- если - синее число, то положим
равным числу
;
- если - красное число, то положим
равным
, где
- первое число отрезка, содержащего
.
Заметим, что для каждого синего отрезка сумма обратных значений последовательности на нём равна
поэтому
последовательность сумм
не ограничена сверху. Аналогично, для последовательности
сумма обратных значений на
каждом красном отрезке равна
поэтому последовательность сумм
не ограничена сверху.
Ошибка.
Попробуйте повторить позже
Про положительные числа и
известно, что
Какие значения может принимать произведение ? Укажите все возможные варианты и докажите, что других нет.
Заметим, что при каждом положительном функция
строго монотонно убывает на луче поскольку знаменатели всех дробей возрастают. Следовательно, функция
принимает
каждое значение не более одного раза. При этом нетрудно видеть, что:
откуда и заключаем, что