Тема . Курчатов

Последовательности, функции и их свойства на Курчатове (матан...)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела курчатов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85558

Последовательность натуральных чисел a,a ,a ,...
 0 1 2  определяется следующими соотношениями:

a0 = 1

a  =kn +(−1)na  ,
 n           n−1

где k  — фиксированное натуральное число.

Сколько существует таких последовательностей, в которых встречается число 2024?

Источники: Курчатов - 2024, 11.1 (см. olimpiadakurchatov.ru)

Показать ответ и решение

Докажем, что для любого целого m ≥0  справедливы следующие формулы:

a  = 4mk+ 1,
 4m
a4m+1 = k− 1,
a4m+2 = (4m + 3)k− 1,
a4m+3 = 1.

Будем доказывать эти формулы индукцией по m  . База m = 0  проверяется непосредственно. Предположим, что формулы справедливы для всех чисел, не больших m − 1  , и докажем эти формулы для числа m  . Поскольку по предположению индукции a4m−1 = 1  , последовательно получаем следующие равенства:

 a4m = k⋅(4m)+ (−1)4ma4m−1 =4mk +1,
a    = k(4m +1)+ (− 1)4m+1a  = (4km + k)− (4mk+ 1)=k − 1,
 4m+1               4m+2 4m
a4m+2 = k(4m +2)+ (− 1)    a4m+1 = (4km +2k)+ (k − 1)= (4m + 3)k− 1,
a4m+3 = k(4m +3)+ (− 1)4m+3a4m+2 = (4km +3k)− (4km +3k − 1)= 1.

Таким образом, наши формулы доказаны. Теперь, используя эти формулы, посмотрим, какие члены нашей последовательности могут равняться 2024. Ясно, что числа вида a4m  и a4m+3  не могут равняться 2024: числа вида a4m  нечётны, а числа вида a4m+3  равны 1 . Далее, числа вида a4m+1  могут равняться 2024 только при k =2025  , что дает нам один пример последовательности.

Наконец, предположим, что для некоторого целого неотрицательного m  число a4m+2  равно 2024 . Мы получаем следующее уравнение: (4m+ 3)k= 2025  . Заметим, что сомножитель 4m + 3  дает остаток 3 при делении на 4 , а число 2025 дает остаток 1 при делении на 4. Значит, число k  , во-первых, должно быть делителем числа 2025 , а во-вторых, должно иметь остаток 3 при делении на 4 (т.к. 3⋅3≡ 1(mod4)  ). Поскольку 2025 =34⋅52  , число k  имеет вид 3α⋅5β  , где α∈ {0,1,2,3,4} и β ∈{0,1,2} . Для того, чтобы число  k  такого вида давало бы остаток 3 при делении на 4 , необходимо и достаточно, чтобы степень α  была бы нечетной (поскольку 5 ≡1(mod4)  и 3α ≡ 4(−1)α(mod4)  ). Получаем ещё 6 возможных значений k:3,3⋅5,3⋅52,33,33⋅5,33⋅52  . Вместе с вариантом k =2025  получаем 7 возможных последовательностей.

Ответ: 7

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!