Многочлены и квадратные трёхчлены на Звезде
Ошибка.
Попробуйте повторить позже
Датчик случайных чисел за одно действие уменьшает или увеличивает на 1 коэффициент перед или свободный член
в квадратном трёхчлене. После некоторого числа таких операций он преобразовал трёхчлен
в трехчлен
. Верно ли, что среди полученных в процессе квадратных трёхчленов есть такой, у которого целые корни? Ответ
обоснуйте.
Источники:
Давайте попробуем доказать, что в какой-то момент у квадратного трёхчлена будут целые корни. Для этого угадаем один из них. Если
сумма коэффициентов многочлена равна 0, то есть корень У начального многочлена
сумма коэффициентов
равна 3, а у конечного
сумма коэффициентов равна -199, при этом за одно действие ровно один из коэффициентов
меняется на 1, значит, сумма коэффициентов меняется на 1. Но если она была положительной, а потом стала отрицательной, то в
какой-то момент обязательно была равна 0. То есть в какой-то момент у нас был трёхчлен
, один из
корней которого равен 1! А по теореме Виета второй корень равен
— тоже целому числу
у трёхчлена 2 целых
корня!
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!