Многочлены и квадратные трёхчлены на Звезде
Ошибка.
Попробуйте повторить позже
Известно, что функция принимает неотрицательные значения для всех
. Найдите наименьшее значение
выражения
Источники:
Подсказка 1
Хотим получить оценку снизу. Воспользуемся условием неотрицательности функции, а также тем, что она представлена квадратным уравнением. Какие условия из этого можем получить?
Подсказка 2
Отсюда возникают условия на дискриминант (меньше либо равен 0), а также на положительность коэффициента при старшей степени. Отсюда легче всего получить оценку снизу именно для b (для a тоже можно, но выражение будет неприятнее).
Подсказка 3
Теперь в искомом выражении заменим b на нашу оценку снизу. Однако можно заметить, что у нас все ещё остаются слагаемые с a. попробуем их тоже как-то оценить снизу. Как можно аккуратно это сделать?
Подсказка 4
На данном этапе у нас есть дробь, в числителе и знаменателе которой есть слагаемые с a. Хотим оценить её снизу. Обратим внимание на то, что (если не было совершено арифметических ошибок), в числителе дроби выражение имеет вид xa² + 1. Тогда знаем, что можно оценить его снизу как xa² + 1 ≥ √(xa²). Это возможно как раз из-за того, что для любых xa² ≥ 1 выполняется даже xa² ≥ √(xa²), а в случае xa² < 1 имеем, что и √(xa²) < 1, поэтому 1 + xa² > √(xa²). После такой оценки выражение уже не зависит от а и имеет точное значение. Оно и будет наименьшим.
Так как принимает неотрицательные значения для всех
то
и
Получаем
Построим оценку:
Причём равенство достигается при
3
Ошибка.
Попробуйте повторить позже
Датчик случайных чисел за одно действие уменьшает или увеличивает на 1 коэффициент перед или свободный член
в квадратном трёхчлене. После некоторого числа таких операций он преобразовал трёхчлен
в трехчлен
. Верно ли, что среди полученных в процессе квадратных трёхчленов есть такой, у которого целые корни? Ответ
обоснуйте.
Источники:
Подсказка 1
Следить сразу за двумя целыми корнями как-то сложновато. Давайте для начала попробуем доказать, что в какой-то момент будет один целый корень. Может возьмем какой-нибудь конкретный?
Подсказка 2
А чего мелочится, давайте посмотрим на 1! Если у нашего трехчлена есть корень 1, то сумма его коэффициентов равна 0. Как меняется сумма наших коэффициентов после одной операции?
Подсказка 3
Верно, она меняется на 1! Изначально сумма была 3, а в конце -199. Значит в какой-то момент она станет равной 0. Итак, в какой-то момент у нашего трехчлена будет корень 1. Докажите, что тогда у него есть второй целый корень (возможно кратный)!
Давайте попробуем доказать, что в какой-то момент у квадратного трёхчлена будут целые корни. Для этого угадаем один из них. Если
сумма коэффициентов многочлена равна 0, то есть корень У начального многочлена
сумма коэффициентов
равна 3, а у конечного
сумма коэффициентов равна -199, при этом за одно действие ровно один из коэффициентов
меняется на 1, значит, сумма коэффициентов меняется на 1. Но если она была положительной, а потом стала отрицательной, то в
какой-то момент обязательно была равна 0. То есть в какой-то момент у нас был трёхчлен
, один из
корней которого равен 1! А по теореме Виета второй корень равен
— тоже целому числу
у трёхчлена 2 целых
корня!
Ошибка.
Попробуйте повторить позже
Существует ли такой многочлен с целыми коэффициентами, что
a
Источники:
Подсказка 1
Попробуем пойти от противного. У нас есть информация про многочлен f(x) и его производную f'(x) при x = 4. Эти значения не равны, а можно ли по многочлену f(x) построить другой многочлен g(x), для которого g(4) = g'(4)?
Подсказка 2
Можно! Положим g(x) = f(x) - 1. Тогда g(4) = f(4) - 1 = 0 и g'(4) = f'(4) = 0. Значит, 4 — кратный корень многочлена g(x). Заметим также, что g(9) = 10. Могло ли так получится?
Подсказка 3
Так как 4 — кратный корень многочлена g(x), то g(x) = (x-4)²P(x) для некоторого многочлена P(x). Каким свойством тогда обладает g(9)?
Предположим, что такой многочлен существует. Рассмотрим многочлен Он также имеет целые коэффициенты. При
этом
Тогда многочлен
имеет вид
Число должно делиться на
Противоречие.