Тема Бельчонок

Тождественные преобразования и системы на Бельчонке

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бельчонок
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#74657

Найдите целую часть числа

---1---  ---1---     -----1----
√1 +√2-+ √3+ √4 +⋅⋅⋅+√623-+√624

Источники: Бельчонок-2022, 11.5 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Гораздо удобнее работать с целочисленными знаменателями-> что нужно сделать, чтобы они стали именно такими? Попробуем оценить число А другим число так, чтобы нам было удобно оценивать их разность двумя способами. Тогда мы сможем прийти к оценке числа А!

Подсказка 3

А+В=24(почему?). Теперь мы можем оценить их разность, группируя соответствующие слагаемые.

Подсказка 4

Их разность меньше 1, а сумма равна 24. Осталось ли ль сделать соответствующие выводы)

Показать ответ и решение

Обозначим

    --1---- ---1---      ----1-----
A = √1+ √2 +√3-+ √4 + ⋅⋅⋅+ √623+ √624

Возьмём число

B = √--1√--+ √-1-√-+ ⋅⋅⋅+ √---1-√---
     2+  3    4+  5       624+  625

Число слагаемых одинаково, каждое слагаемое в A  больше соответствующего слагаемого в B,  поэтому A > B.  Избавимся от иррациональности в знаменателях:

A= √2-− √1-+√4 − √3+ ⋅⋅⋅+ √624− √623

B =√3-− √2-+ √5− √4+ ⋅⋅⋅+ √625− √624

Очевидно,       √ --- √-
A+ B =  625 − 1 =24.  Оценим A − B.

               (                )      (
A− B =√--1-√-−  √--1-√-− √--1√-- − ⋅⋅⋅−  √---1-√---−
        1+  2     2+  3   3 +  4         622+  623

− √---1-√---)− √---1-√---< √--1√--< 1
   623+  624    624+  625    1+  2

Подставим B = 24 − A :

A− 24+ A< 1,

отсюда A < 12,5.  Но A > B,  значит, A >12.  Следовательно, целая часть числа A  равна 12.

Ответ: 12

Ошибка.
Попробуйте повторить позже

Задача 2#77812

Найдите для всех натуральных n >1  положительные решения системы

{  x +2x + ⋅⋅⋅+ nx = 3
   11+ -21-+⋅⋅⋅+-1n =3
   x1  2x2      nxn

Источники: Бельчонок - 2022, 11.2 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Слишком много переменных, и еще они умножаются на коэффициенты какие-то. Попробуем вместо переменных x_i ввести y_i таким образом, чтобы нам стало приятнее жить. И для y_i уже можно что-то заметить.

Подсказка 2

Думаю, Вы догадались, что замена нужна такая: i*x_i = y_i. Тогда обращаем внимания, что во втором уравнении слагаемые - обратные величины к слагаемым первого. Что мы знаем про сумму положительного числа и его обратной величины?

Подсказка 3

Как с помощью этого неравенства мы можем отбросить из рассмотрения много случаев?

Подсказка 4

На этом этапе вам остается рассмотреть отдельно n = 2 и n = 3 и решить задачу для них. Здесь уже нет ничего сложного!!

Показать ответ и решение

Обозначим y = kx
 k    k  и сложим уравнения системы:

(    1-)  (    1-)      (    1-)
 y1+ y1 +  y2+ y2 + ...+  yn+ yn  =6

Для положительных чисел справедливо неравенство об обратных: a + 1a ≥ 2.  Поэтому левая часть не меньше 2n,  отсюда n ≤3.  При n= 3  каждое из слагаемых равно 2,  отсюда y1 =y2 = y3 = 1,  и x1 = 1,x2 = 12,x3 = 13.  При n =2  получается система:

{               {
   x1+2x2 = 3, ⇒   2x2 = 3− x1,
   1x1-+ 12x2-=3.      1x1-+ 3−1x1-=3.

Решая последнее уравнение, получаем, что     3±√5     3∓√5
x1 =--2-,x2 =-4--.

Ответ:

 x = 3±√5,x = 3∓√5
 1    2   2   4  при n= 2;

         1     1
x1 =1,x2 = 2,x3 = 3  при n= 3;

при других n  решений не существует.

Рулетка
Вы можете получить скидку в рулетке!