Тема Бельчонок

Теория чисел на Бельчонке

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бельчонок
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#86093

Известно, что числа a,b,c,ab + ac + bc
     c   b   a  — целые. Обязательно ли являются целыми все три числа

abac bc
c , b ,a ?

Источники: Бельчонок - 2024, 11.2 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Рассмотрим числа ab,ac,bc
c  b a  . По условию их сумма целая, их произведение равно abc  — целое, сумма их попарных произведений равна  2  2   2
a + b +c  — целая. Значит, мы можем составить приведённый многочлен с целыми коэффициентами и корнями ab ac bc
-c ,-b ,a  :

          ab  ac  bc                         ab    bc    ac
P(x)=x3− (c-+ b-+ a)x2+ (a2+ b2+c2)x− abc= (x− c )(x− a)(x− b-)

Осталось заметить, что корни рациональны как отношения целых чисел. Если целочисленный многочлен имеет рациональный корень pq,(p,q)=1  , то его старший коэффициент делится на q  . Поскольку наш многочлен приведённый, корни являются целыми.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 2#86096

Найдите все пары (a,b)  натуральных чисел, для которых

             3
27ab+(1− a+ b) = 0

Источники: Бельчонок - 2024, 11.5 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Во-первых, покажем, что a  и b  взаимно просты. Пусть это не так, тогда они делятся на какое-то простое число p  , а значит и a− b− 1  делится на p  , но это не так.

Во-вторых, покажем, что a  и b  — точные кубы. Число 27ab  — куб, 27  — куб, значит и ab  — куб. Если некоторое простое число входит в ab  в степени 3α  , то оно либо входит в этой же степени в a  , а в b  — в нулевой, либо наоборот, так как (a,b)= 1  . Таким образом, a  и b  — кубы, ведь все простые множители входят в них в 3  степени.

Пусть    3    3
a= a1,b= b1  , тогда извлечём из равенства кубический корень и получим:

3a1b1 = a31 − b31− 1

Зафиксируем a1  и сравним с ней b1  . Ясно, что b1 ≤a1− 1  , потому что иначе правая часть отрицательна, а левая — положительна. Перепишем равенство в виде:

 3         3
b1+ 3a1b1 = a1− 1

Нетрудно видеть, что

 3             3             3
b1+ 3a1b1 ≤ (a1− 1)+ 3a1(a1− 1)=a1− 1

То есть равенство возможно лишь когда b1 = a1− 1  , откуда b= b31,a= (b1 +1)3  . Притом эта пара является решением при любом натуральном b1  .

Ответ:

 a =(k+ 1)3,b= k3,k∈ ℕ

Ошибка.
Попробуйте повторить позже

Задача 3#86099

Сколько двузначных натуральных чисел нельзя представить в виде суммы двух палиндромов?

Палиндром - число, читающееся одинаково слева направо и справа налево. Однозначные числа 0,1,...,9  также считаются палиндромами. Многозначные палиндромы не могут начинаться с 0.

Источники: Бельчонок - 2024, 11.3 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Если число n  является палиндромом, то числа n,n +1,n+ 2,...,n +9  допускают нужное представление. Поэтому числа от 10  до  20  могут быть представлены нужным образом:

10= 9+ 1,11= 11+0,12= 11+1,...,20= 11 +9

Если число n  двузначное и является палиндромом, то число n +11  также палиндром, и может быть представлено как (n +11)+ 0  . Например, если n = 55,n+ 11= 66 =66+ 0  . Поскольку разность между соседними двузначными палиндромами равна 11  , это означает, что все такие числа допускают нужное представление. Осталось рассмотреть числа вида n+ 10  , где n  — палиндром, то есть числа 21,32,43,54,65,76,87,98  . Пусть число n+ 10= a+ b  . Если и a  и b  двузначные палиндромы, тогда правая часть делится на 11  , а левая нет. Значит, одно из слагаемых должно быть однозначным, то есть числом из набора 0,1,...,9  . Но разность 10  и любого числа из набора не кратна 11  . Числа 21,32,43,54,65,76,87,98  нельзя представить как сумму двух палиндромов.

Ответ: 8

Ошибка.
Попробуйте повторить позже

Задача 4#86101

Найдите множество всех целых значений суммы

x   y  3
y + 3 + x,

где x  и y  — произвольные натуральные числа.

Источники: Бельчонок - 2024, 11.5 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Пусть x + y+ 3= m
y   3  x  — натуральное число. Тогда

  2  2
3x + yx+ 9y = 3mxy

Если x  не делится на 3  , то y  делится на 3  . Но в таком случае все члены равенства, кроме 3x2  , делятся на 9  , а 3x2  делится только на 3  , что невозможно. Значит, x  делится на 3  , то есть x= 3z  для некоторого натурального числа z  . Имеем

  2  2
9z +y z+ 3y = 3myz,

откуда y  делится на 3  или z  делится на 3  .

_________________________________________________________________________________________________________________________________________________________________________________

Пусть y = 3w  . Тогда

z2 +w2z+ w =mwz,

откуда w  делится на z  . Но в таком случае w  делится и на z2  , то есть w= z2u  для некоторого натурального u  . Теперь имеем 1+ z3u2 +u =mzu  , откуда u =1  . Ясно, что число z2+ 2z  будет целым только при z ∈ {1,2} , при этом m ∈ {3,5} .

_________________________________________________________________________________________________________________________________________________________________________________

Пусть z =3w  . Тогда 27w2+ y2w+ y = 3myw  . Как и выше, отсюда следует, что y  делится на w2  ,то есть y = w2u  для некоторого натурального u  . Теперь имеем 27+ w3u2+ u= 3mwu  , откуда u  делит 27  , то есть u∈{1,3,9,27} . При u= 3,u= 9,u =27  получаем невозможные равенства

 3   3 2     2
3 + w 3 +3 =3 mw

33+w334+ 32 = 33mw

2⋅33 +w336 = 34mw

соответственно. При u =1  число    28+w3
m= --3w--  , откуда w  — делитель 28  , при этом

28+w3 ≡ w3+ 1≡ 0 (mod 3),

то есть w ≡ −1 (mod 3)  . Следовательно, w ∈{2,14} , и тогда m ∈ {6,66} .

Ответ:

 3,5,6,66

Ошибка.
Попробуйте повторить позже

Задача 5#69403

Решите уравнение

 2a   a     k ℓ
3  + 3 +2 =2 7

в целых неотрицательных числах.

Источники: Бельчонок-2023, 11.5 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Если ℓ ≥2,  то получим сравнение

 2        (    2)
t +t+ 2≡ 0 mod 7

где t= 3a.  Но это сравнение невозможно ни при каком t  (проверку осуществляем с перебора остатков по модулю 7).  Значит, ℓ∈ {0;1}.

1.

В случае ℓ= 0  имеем уравнение 32a+ 3a+ 2= 2k.  Если a =0,  то k =2.  При a= 1  решений нет. Далее считаем a≥2.  Имеем k≥ 2  и 2k ≡ 2(mod 3),  откуда k =2m +1  для некоторого натурального m.  Из равенства 3a (3a+ 1)=2 (4m − 1)  следует, что m  делится на 3 (иначе правая часть не будет делиться на 9). Тогда 4m− 1  делится на 43− 1=7 ⋅9.  Следовательно, 3a+ 1  делится на 7. Но тогда a≡ 3(mod 6),  так что 3a+ 1≡ 0  (mod 33+1).  Однако 33+ 1≡ 0(mod 4),  что дает противоречие.

2.

Рассмотрим случай ℓ= 1.  При a= 1  из уравнения  2a   a        k
3  +3 + 2= 7⋅2  находим k= 1.  Пусть далее a ≥2  и, как следствие, k≥2.  Имеем  (a−1   ) a        (k−1   )
3 3   − 1 (3 +4)= 142  − 1 .  Отсюда следует, что ( a−1   )  a
 3   − 1 (3 +4)  делится на 7. Это возможно только при условии a ≡1(mod 6).  Но тогда  a−1
3   − 1≡ 0(mod 8),  что приводит к противоречию.

Ответ:

 (a,k,ℓ)∈{(0;2;0),(1;1;1)}

Ошибка.
Попробуйте повторить позже

Задача 6#69408

Решите уравнение

 4   2   2
x + y = xy + y

в натуральных числах.

Источники: Бельчонок-2023, 11.5 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Уравнение равносильно

 4       2     2
x − 1= xy +y − y − 1

           2       2
(x − 1)(x +1)(x + 1)= y(x− 1)+(y− 1)

Если x− 1= 0,  то y− 1 =0,  запишем эту пару (1;1)  в ответ.

Теперь рассмотрим x> 1.  Тогда x − 1  это натуральное число и на него делится левая часть уравнения

(x− 1)⋅((x+ 1)(x2+ 1)− y2)= y− 1

А значит, y− 1= ℓ(x − 1)  для некоторого натурального числа ℓ.

После подстановки и сокращения на x − 1  получим уравнение:

(x+ 1)(x2+1)− (1+ ℓ(x − 1))2 =ℓ(x− 1)

(x− 1)2ℓ2+(2x− 1)ℓ− x3− x2 − x =0 (∗)

Если снова посмотреть по модулю x− 1,  то есть разделить в столбик левую часть на натуральное число x− 1  , то окажется, что число

m =-ℓ− 3 = y−-3x-+22
   x − 1   (x− 1)

должно быть целым.

Более того, m< 1,  поскольку это равносильно неравенству y <(x− 1)2+ 3x− 2= x2+x − 1,  которое верно при x >1.

Действительно, если y ≥x2+ x− 1,  то x4 = (x − 1)y2 +y ≥(x− 1)(x2+ x− 1)2+ x2+ x− 1= x5+x4− 3x3+4x − 2,  что невозможно при x > 1.

Таким образом, m <1  =⇒   m ≤ 0,  а значит, ℓ∈{1;2;3}.

При ℓ= 1  уравнение (∗)  принимает вид − x(x2+1)= 0,  что невозможно для x> 1.

Если ℓ= 2,  то число m  будет целым только при x= 2,  однако пара (ℓ,x)= (2,2)  не удовлетворяет уравнению (∗).

При ℓ= 3  уравнение (∗)  переписывается в виде (x− 1)2(x− 6)=0.  Отсюда находим, что x= 6  и затем y =ℓ(x− 1)+ 1= 16.

Ответ:

 (1;1),(6;16)

Ошибка.
Попробуйте повторить позже

Задача 7#74652

Найдите все натуральные числа a,  для которых число

a+1 +√a5-+2a2+-1
-----a2+-1------

также является натуральным.

Источники: Бельчонок-2022, 11.4 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Обозначим a+ 1= b,√a5-+2a2+-1= c  . В числителе записано

      c2-− b2
c+ b=  c− b

На a2+ 1  должно делиться

c2− b2 = a5+ 2a2+ 1− (a +1)2 = a5+a2− 2a≡a2+1 −a − 1

При a> 1  модуль остатка меньше  2
a +1,  поэтому остаток не может делиться на  2
a + 1  ни при каком a> 1.  Уравнению удовлетворяет единственное значение a= 1.

Ответ: 1

Ошибка.
Попробуйте повторить позже

Задача 8#76734

Найдите все пары (x;y)  натуральных чисел, для которых оба числа x2+8y;y2− 8x  являются точными квадратами.

Источники: Бельчонок - 2022, 11.5 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Легко проверить, что пары вида (n;n +2)  , где n – натуральное число, удовлетворяют условию задачи. Пусть (x;y)  – любая другая пара, удовлетворяющая условию задачи. Рассмотрим два случая.

1) Пусть сначала y < x+ 2  . Тогда 2   2       2              2
x <x + 8y < x + 8(x+ 2)= (x+ 4)  , откуда  2          2
x + 8y =(x+ k)  , где k ∈{1;2;3} . Очевидно, возможен лишь случай k= 2  (по чётности), и тогда x= 2y − 1  .

Осталось выяснить, при каких натуральных y  число  2       2
y − 8x= y − 16y+ 8  будет точным квадратом. Пусть  2          2
y − 16y+ 8= a  , тогда       √-----2
y =8±  56+ a  . Число под корнем должно быть точным квадратом:      2  2
56+ a = c  , т. е. 2   2
c− a = 56  .

Разложим 56  на множители и рассмотрим системы. Учитывая, что c− a  и c+ a  имеют одинаковую чётность, отбросим лишние, останутся системы:

{
  c− a =   4
  c+ a =   14

{ c− a =   2
  c+ a =   28

откуда c= 9,a= 5  или c= 15  , a= 13  .

При a= 5  значение y = 8± √56+25  и подходит y = 8+9 =17  . При a= 13  значение y = 8± √56+-169  и подойдет y =8+ 15= 23  . Поскольку x= 2y− 1  , получаем пары (45;23)  и (33;17)  .

2) Пусть теперь y > x+ 2  , т. е. x <y − 2  . Здесь y > 4  , и мы имеем (y− 4)2 = y2− 8(y− 2)<y2− 8x< y2  . Значит, y2− 8x= (y − k)2  , где k ∈{1;2;3} . Опять возможен только случай k= 2  (по чётности), так что y = 2x +1  .

Пусть x2 +16x+ 8= b2  , тогда x= −8± √56+-b2  . Выше показано, что число под корнем является точным квадратом только при b= 5  или b= 13  . Тогда x =1  или x =7  . Получаем пары (1;3)  и (7;15)  , первая из которых входит в множество (n;n+ 2) .

Ответ:

 (7;15),(33;17),(45;23),(n;n+ 2),n∈ ℕ

Ошибка.
Попробуйте повторить позже

Задача 9#94776

Найдите количество пар натуральных чисел (a;b)  , каждое из которых меньше миллиона, удовлетворяющих равенству

Н ОК (a,b+ 1)= HOK (b,a+ 3)

Источники: Бельчонок - 2021, 11.4 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Заметим, что b(a+ 3)  делится на НОК (b,a+ 3)  , который равен НОК (a,b+ 1)  и в свою очередь делится на a  . Также a(b+ 1)  делится на НОК (a,b+ 1)=HOK (b,a +3)  , а последнее выражение делится на b  , поэтому a  делится на b  . Значит, либо a= b  , либо a=   3b  . В первом случае получаем

a(a+ 1)=HOK (a,a+ 3)

следовательно, a(a+1)= (a+ 3)(a− 2)+ 6  делится на a+ 3  . Таким образом, a+ 3  есть делитель 6 , откуда a= 3,b= 3  — увы, эта пара чисел не удовлетворяет уравнению. Во втором случае, получаем

НО К (3b,b+ 1)=HOK (b,3(b+1))

Если b  кратно 3 , то левая часть делится на большую степень тройки, чем правая. Если b+1  кратно 3, то правая часть делится на большую степень тройки, чем левая. Если же b  дает при делении на 3 остаток 1 , то обе части равны 3a(a+1)  . Итак, требуется найти количество натуральных чисел b= 3x+ 1  , таких что 3b< 1000000  . Их ровно 111111.

Ответ: 111111

Ошибка.
Попробуйте повторить позже

Задача 10#70328

Выражение n  ! означает произведение всех натуральных чисел от 1  до n  включительно, т. е. n!= 1⋅2⋅...⋅n  . Решите в натуральных числах уравнение

      2       2
n!− 4n +18= m  +4nm − 20m
Показать ответ и решение

Воспользуемся делимостью на 4, чтобы получить ограничение на значение n  . При n ≥ 4  имеем

      n!− 4n2+ 18≡ 2 ⇒ m2+ 4nm − 20≡ 2⇔ m2 ≡ 2
                 4                 4       4
что невозможно, так как квадраты даю т остатки 0,1,3 по модулю 4.

Следовательно, n≤ 3.  Переберем возможные варианты n  и выберем те, при которых m ∈ℕ.

⌊
| n= 1  и  m(m − 16)= 15 ⇒ m ∕∈ℕ
⌈ n= 2  и  m(2m − 12)= 4⇒ m ∕∈ℕ
  n= 3  и  m − 8m +12= 0⇒ m = 2;6
Ответ:

 (2,3),(6,3)

Ошибка.
Попробуйте повторить позже

Задача 11#103409

Найдите все тройки попарно взаимно простых натуральных чисел (a,b,c)  (a ≤b≤ c),  для которых an +bn+ cn  делится на a+b +c  для всех натуральных 2≤ n≤ 12.

Источники: Бельчонок - 2020, 11.5 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Обозначим A  =an+ bn+ cn.
 n  Заметим, что A = A 2− 2(ab+ bc +ac),
 2   1  и A
 2  делится на A = a+ b+ c
 1  тогда и только тогда, когда 2(ab+bc+ ac)  делится на A1.  (*)

Аналогично A3 = A1⋅A2 − (ab+bc+ ac)A1+ 3abc,  и делится на A1 = a+ b+ c  тогда и только тогда, когда 3abc  делится на A1.  (**) Запишем соотношение для n> 3  :

An = A1⋅An−1− (ab+bc+ ac)An−2+ abcAn−3.

Отсюда видно, что если A
 1  — делитель A ,
 2  то A
 1  — делитель A ,
  4  если A
 1  — делитель A
  2  и A ,
  3  то A
 1  — делитель A
 5  , A ,
 6  и так далее, то есть делитель An  для любого натурального n.

Будем искать упорядоченные тройки ( a,b,c  ), для которых выполняются условия (*) и (**), то есть 2(ab +bc+ ac)  и 3abc  делятся на a+ b+ c.  Пусть a +b+ c  имеет простой делитель p≥5.  Тогда abc  делится на p  , и в силу взаимной простоты ровно одно из чисел a,b,c  делится на p  . Но тогда ab+ bc+ ac  не может делиться на p  , и значит, на a +b+ c  . Пусть a+b+ c  делится на  2
3  , тогда  abc  делится на 3,  и в силу взаимной простоты ровно одно из чисел a,b,c  делится на 3,  тогда ab +bc+ac  не может делиться на 3,  и значит, на a+ b+ c  . Пусть a +b+ c  делится на  2
2  , тогда abc  делится на 4,  и ровно одно из чисел a,b,c  , делится на 4,  тогда ab+ bc+ac  нечётное и 2(ab+ bc+ac)  не может делиться на 4.  Следовательно, a+ b+ c  имеет вид  k  m
2 ⋅3 ,  где k  и m  принимают значения 0  или 1,  при этом a+b ≥3,  откуда 3≤ a+ b+c≤ 6.  Подходят тройки (1,1,1),(1,1,4).

Ответ:

 (1,1,1);(1,1,4).

Ошибка.
Попробуйте повторить позже

Задача 12#76731

В ряд выписывают дроби -1-,-2-,-3-,...,4060,4061.
4061 4060 4059     2   1  Сколько всего целых чисел встретится в таком ряду?

Показать ответ и решение

Сумма числителя и знаменателя каждой дроби равна 4062  , то есть каждая дробь имеет вид 4062−x
  x  , где x  – натуральное число, не превосходящее 4061  . Число 4062−x   4062
  x   =  x − 1  будет целым, когда число x  - делитель 4062  .

Поскольку 4062 =2 ⋅3 ⋅677  , где числа 2  , 3  и 677  – простые, у числа 4062  будет 8  делителей. И так как x< 4062  , x  может принимать одно из 7  значений (все делители 4062  , кроме самого числа), чтобы дробь 4062−x
  x  была целой.

Ответ: 7

Ошибка.
Попробуйте повторить позже

Задача 13#101480

Найдите все натуральные числа n,  для каждого из которых существуют такие натуральные числа p  и q,  что

( 2   )p        q
 n + 2  =(2n− 1).
Показать ответ и решение

Очевидно, что n ≤ 4  условию задачи не удовлетворяют.

Непосредственно проверяем, что n = 5  удовлетворяет условию.

Далее считаем, что n ≥ 6  .

Если r  является простым делителем числа  2
n + 2  , то       ..
(2n − 1).r  и наоборот: если r  — простой делитель числа 2n− 1  , то (2   ) ..
n + 2 .r  . Итак, возьмем общий простой делитель r  чисел  2
n + 2  и 2n− 1  . Имеем:

n2+2 =rk,2n− 1= rl,

где k  и l  — натуральные числа. Тогда

   2              2          22
(2n) +8 =4rk, (rl+ 1)+ 8= 4rk, rl + 2rl+ 9= 4rk,

и поэтому 9 ...r  . Поскольку число r  простое, то r= 3  . Мы установили, что

n2+ 2= 3m, 2n− 1= 3s,

где m  и s  — натуральные числа, причём m > s≥ 3  . Но из последних двух равенств следует, что

(3s+ 1)2+ 8= 4⋅3m,32s +2⋅3s+ 9= 4⋅3m.

Итак,  .
9..3s  , что невозможно для s≥ 3  .

Ответ: 5
Рулетка
Вы можете получить скидку в рулетке!