Функции на Высшей пробе
Ошибка.
Попробуйте повторить позже
В этой задаче запись где
— целое а
— натуральное, обозначает такое целое число
от 0 до
что
делится на
Существует ли такая функция определенная для целых значений аргумента и принимающая целые значения, что при любом целом
верно
Источники:
Стандартным ходом при решении задач на функциональные уравнения является подставить какое-то значение переменной, при котором два
часто возникающих и не равных друг-другу тождественно выражения оказываются равны, и посмотреть, какие следствия из этого удастся
вывести. Применительно к данной задаче на роль такой подстановки простится значение для которого выполнялось бы
Задумаемся, а существует ли такое Условие равносильно квадратному уравнению в остатках(в этом абзаце все сравнимости по
модулю 7):
Или можно было просто перебором остатков, благо их всего 7, убедиться, что любой из 3 и 5 подходят.
Что же нам дает равенство Просится от обоих частей взять функцию
а затем воспользоваться условием задачи.
Имеем:
Чтобы подчеркнуть полученное, обозначим и выбросим среднюю часть:
Отсюда следует (далее все сравнимости будут по модулю 11)
Отметим что это именно следствие, а не равносильность. Выясним, имеет ли сравнимость решения, действуя стандартно А
извлекается ли квадратный корень из -3 по модулю 11? Заметим что
и
Мы перебрали все остатки, среди квадратов не нашлось -3, значит корень не извлекается, значит уравнение
не имеет решений.
Итак, требуемой функции не существует.