Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела многочлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76193

Дед Мороз на Новый год принёс в мешке два различных чудесных многочлена степени 2024, у которых равны значения при всех натуральных аргументах до 2024 включительно. А могут ли в точке 2024 быть равны ещё и значения производных от этих многочленов?

Показать ответ и решение

Обозначим эти чудесные многочлены как P(x)  и Q (x)  . Из условия следует, что разность этих многочленов R(x)=P (x)− Q(x)  имеет 2024 корня, нетождественна равна нулю (потому что многочлены различные) и может иметь степень не выше 2024. Поэтому при каком-то ненулевом числе c  можно записать

R (x)= c⋅(x− 1)⋅...⋅(x− 2024)

В условии спрашивают, может ли быть P ′(2024)= Q′(2024)  ⇐ ⇒  R′(2024)= 0.  Представим R(x)  в виде (x− 2024)⋅T(x)  и посчитаем производную произведения

 ′           ′              ′                 ′
R (x)= (x− 2024)T(x)+(x− 2024)T(x)= T(x)+ (x − 2024)T (x)

Получаем, что в точке 2023 производная не равна нулю:

 ′
R(2024)= T(2024)+ 0= c⋅(2024− 1)⋅...⋅(2024− 2023)= c⋅2023!
Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!