Применение производной в многочленах
Ошибка.
Попробуйте повторить позже
Дед Мороз на Новый год принёс в мешке два различных чудесных многочлена степени 2024, у которых равны значения при всех натуральных аргументах до 2024 включительно. А могут ли в точке 2024 быть равны ещё и значения производных от этих многочленов?
Обозначим эти чудесные многочлены как и . Из условия следует, что разность этих многочленов имеет 2024 корня, нетождественна равна нулю (потому что многочлены различные) и может иметь степень не выше 2024. Поэтому при каком-то ненулевом числе можно записать
В условии спрашивают, может ли быть Представим в виде и посчитаем производную произведения
Получаем, что в точке 2023 производная не равна нулю:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!