Тема . НадЭн (Надежда энергетики)

Теория чисел на Энергетике

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела надэн (надежда энергетики)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76735

Решите уравнение с тремя неизвестными

 Y    Z
X  + Y = XY Z

в натуральных числах.

Подсказки к задаче

Подсказка 1

Понятно, что таковое равенство может редко когда достигаться, так как слева что-то почти всегда большее чем справа(степень растет быстрее произведения). Значит, нужно сделать какую-то понятную оценку, а все случаи, которые под нее не подходят, перебрать. Мы хотим какими-то неравенствами получить XYZ, как оценку снизу. Что мы знаем из неравенств? Как это неравенство нам поможет в оценке XYZ(желательно несколько симметрично относительно X и Z, так как очень похожее структурно)?

Подсказка 2

Да, хочется применить неравенство о средних для двух чисел, но как? Нам нужно как-то X^Y перейти к произведению XY*(что-то, не обязательно константное). Аналогично, со вторым слагаемым. Если X >= 2, то X^k >= 2^k, k - натуральное. При этом, 2^k >= 2k(доказывается по индукции), или 2^(k - 1) >= k. Как с этим знанием найти эту оценку?

Подсказка 3

Верно, можно сделать оценку, что X^Y >= X^2 * X^(Y - 2) >= X^2 * 2^(Y - 2) >= X^2*Y/2. При этом, если бы X >= 3, то мы могли бы сказать, что X^(Y - 1) >= 3^(Y - 1) > 2 ^ (Y - 1) > Z^2/2(при Z > 4, остальные Z перебираются). Значит, можно это неравенство применить на второе слагаемое в левой части уравнения.

Подсказка 4

Тогда, Y^Z = Y^(Z - 1) * Y >= 3^(Z - 1) * Y >= Z^2*Y/2. Почему это хорошие оценки? Потому что у нас получается идеальные слагаемые для оценки их как неравенства о средних(Z^2*Y/2 и X^2*Y/2), так как степень каждой переменной будет равна 2/2 = 1, а коэффициент будет равен 1(из за 1/2 перед каждым слагаемым). Значит, при Х >= 2, Y >= 3 у нас есть строгая оценка, что левая часть больше правой. Отсюда, осталось грамотно перебрать меньшие, но это уже задача вполне рабочая.

Показать ответ и решение

1) Рассмотрим случаи. При Y = 1  получаем уравнение:

X +1 =XZ

откуда X (Z − 1)= 1  , то есть X =1  , Z = 2  .

2) При Y = 2  получаем уравнение:

 2   Z
X + 2 = 2XZ

(X − Z)2+2Z − Z2 =0

При Z =1  решений нет. При подстановке Z = 2,3,4  получаем решения (2;2;2)  , (2;2;3)  , (4;2;3)  , (4;2;4)  . При Z > 4  будет выполнено, что 2Z >Z2  и тогда решений не будет.

Доказать, что 2Z > Z2  легко по индукции. База индукции проверяется подстановкой Z =5  .

Шаг индукции доказывается тем, что если 2Z >Z2,  то

2Z+1 =2Z +2Z >2Z2 >Z2 +2Z +1,

так как Z2− 2Z− 1> 0  при Z > 4  .

3) При Y ≥3  сначала рассмотрим случай X = 1  . Тогда имеем уравнение

    Z
1+Y  = YZ

которое не имеет решений, так как

YZ ≥ YZ− 1Y ≥ 2Z−1Y ≥ YZ

(неравенство 2Z− 1 ≥Z  легко доказать по индукции)

Иначе Y ≥ 3,X ≥ 2  . Тогда

XY = XY −2X2 ≥ 2Y−2X2 ≥ 1X2Y
                      2

(в последнем переходе снова используем неравенство 2Y−1 ≥ Y  )

Y Z = YZ− 1Y ≥ 3Z−1Y > 1Z2Y
                    2

При Z <5  неравенство

3Z−1 > 1Z2
      2

можно проверить вручную, а при Z ≥5  сослаться на доказанное нами неравенство

3Z−1 > 2Z−1 > 1Z2
            2

В итоге, воспользовавшись доказанным и неравенством между средними, получаем:

 Y    Z  1  2   1  2    √-2-2-
X  +Y  > 2X Y + 2YZ  ≥Y  X Z  =XY Z

То есть при Y ≥3,X ≥2  решений нет, так как

 Y    Z
X  + Y > XY Z
Ответ:

 (1;1;2)  , (2;2;2)  , (2;2;3)  , (4;2;3)  , (4;2;4).

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!