Тема НадЭн (Надежда энергетики)

Теория чисел на Энергетике

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела надэн (надежда энергетики)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#87530

Запись числа A  заканчивается цифрой 3. Если же последнюю цифру переставить в начало, то получится число, на 27 больше A  . Найдите A  , если известно, что оно делится на 99, или докажите, что такого числа не существует.

Источники: Надежда энергетики - 2024, 11.3 (см. www.energy-hope.ru)

Показать ответ и решение

Пусть A  имеет в своей записи k+ 1  цифру, тогда

A= x⋅10+ 3

где x  — это какое-то k  -значное число. Значит, после перестановки 3 в начало мы получим число

B = 3⋅10k+ x

По условию B =A + 27,  получаем равенство

10x+ 3+ 27 =3 ⋅10k+ x

9x= 3⋅10k− 30 =30⋅(10k−1− 1)= 30 ⋅ 9◟9.◝..◜9 ◞
                              k−1цифр

x =30⋅ 1◟1.◝◜..1◞ = 3◟3..◝.◜30◞
      k−1цифр  k цифр

Следовательно, можем понять как выглядит A

A=  3◟3..◝◜.3◞ 03
   k−1цифр

По условию A  должно делиться на 99, а следовательно оно делиться на 11. Значит, по признаку делимости на 11, знакопеременная сумма цифр числа A  должна делиться на 11. Но видно из его записи, когда k − 1  чётно, то знакопеременная сумма равна 3, когда k− 1  нечётно, то знакопеременная сумма равна 6. Следовательно, на 11 A  делиться не может.

В итоге делаем вывод, что чисел, подходящих под условия задачи, не существует.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 2#71018

Какое число больше: 20232023  или 20222024?

Источники: Надежда энергетики-2023, 11.5 (см. www.energy-hope.ru)

Показать ответ и решение

Рассмотрим отношение чисел

20232023  2023 ( 2023)2022  2023 (     1 )2022
20222024 = 20222-⋅ 2022    = 20222 ⋅ 1 +2022

Применим известное неравенство:

   (     )
2 <  1+ 1 k < 3 ∀k ∈ℕ, k> 1
        k

Тогда

 2023  (    1 )2022   2023⋅3
20222 ⋅ 1+ 2022    < 2022-⋅2022 < 1

_________________________________________________________________________________________________________________________________________________________________________________

Замечание.

Известное неравенство принималось на олимпиаде без док-ва, но любые корректные попытки его обоснования поощрялись. Покажем, как его можно доказать с помощью формулы бинома Ньютона:

(     )
 1 +-1 k = 1+ n-⋅ 1+ n(n−-1)⋅ 1-+ n(n−-1)(n−-2)-⋅ 1-+ ...+ n!⋅ 1-=
    k        1! n     2!    n2       3!      n3      n! nn

     1- (   1)  -1 (   1) (   2)       1-(   1)    (    n−-1)
= 2+ 2! ⋅ 1− n +3! ⋅ 1− n  1− n  + ...+ n! 1− n  ⋅...⋅ 1−  n

Видно, что все скобки вида (   k)
 1+ n меньше 1, но при этом больше 0. Значит, если заменим их на 1, то выражение от этого увеличиться.

      (    )     (     )(     )        (    )     (       )
2+ 1-⋅ 1− 1  + 1-⋅ 1− 1  1 −-2 + ...+ 1- 1− 1  ⋅...⋅ 1− n−-1  <
   2!     n    3!      n     n        n!    n           n

<2 + 1--+ --1--+ ...+ ---1----< 2+ 1 +-1 +...+--1-
     1⋅2   1⋅2⋅3      1⋅2⋅...⋅n     2  22      2n−1

Последнее неравенство верно, ведь мы просто заменили в числителях все числа, которые больше 2, на 2, тем самым уменьшили знаменатели, следовательно, увеличили значение выражения.

   1  -1      --1-     1  -1      --1-  -1         1  -1--
2+ 2 + 22 + ...+ 2n−1 < 2+ 2 +22 +...+ 2n−1 + 2n +...=2 +2 ⋅1− 12 = 3

В конце мы воспользовались формулой суммы бесконечно убывающей геометрической прогрессии.

Ответ:

 20222024

Ошибка.
Попробуйте повторить позже

Задача 3#96523

Зная, что 2021 =43⋅47  , решите в целых числах уравнение с двумя неизвестными

40(x+ y)+xy =421.
Показать ответ и решение

Переменные входят в уравнение симметрично, поэтому если есть решение (x,y)  , то (y,x)  тоже является решением. Далее,

                2
(40+ x)(40+y)= 40 +40(x+ y)+ xy = 1600 +421= 2021.

Введём переменные a= 40+x,b= 40+y ∈ℤ  и рассмотрим уравнение

ab= 2021= 43 ⋅47.

Если есть решение (a,b)  , то есть и решение (b,a)  .

1. Пусть один из множителей равен 1,  например, a= 40+x =1.  Тогда b= 40+ y = 2021,  и есть решения

(x,y)= (−39;1981),(1981;−39).

2. Пусть один из множителей равен − 1,  например, a= 40+x =− 1  . Тогда b=40+ y = −2021,  и есть решения

(x,y)= (− 41;−2061),(−2061;− 41).

3. Пусть нет множителей ± 1.  Тогда (a,b)=(43;47),(−43;− 47),(47;43),(−47;−43)  откуда получаем решения

(x,y)= (3;7),(−83;− 87),(7;3),(−87;−83).
Ответ:

8 пар: (3;7),(7;3),(−39;1981),(1981;− 39),(−41;−2061),(−2061;−41),(−83;−87),(−87,− 83).

Ошибка.
Попробуйте повторить позже

Задача 4#76735

Решите уравнение с тремя неизвестными

 Y    Z
X  + Y = XY Z

в натуральных числах.

Показать ответ и решение

1) Рассмотрим случаи. При Y = 1  получаем уравнение:

X +1 =XZ

откуда X (Z − 1)= 1  , то есть X =1  , Z = 2  .

2) При Y = 2  получаем уравнение:

 2   Z
X + 2 = 2XZ

(X − Z)2+2Z − Z2 =0

При Z =1  решений нет. При подстановке Z = 2,3,4  получаем решения (2;2;2)  , (2;2;3)  , (4;2;3)  , (4;2;4)  . При Z > 4  будет выполнено, что 2Z >Z2  и тогда решений не будет.

Доказать, что 2Z > Z2  легко по индукции. База индукции проверяется подстановкой Z =5  .

Шаг индукции доказывается тем, что если 2Z >Z2,  то

2Z+1 =2Z +2Z >2Z2 >Z2 +2Z +1,

так как Z2− 2Z− 1> 0  при Z > 4  .

3) При Y ≥3  сначала рассмотрим случай X = 1  . Тогда имеем уравнение

    Z
1+Y  = YZ

которое не имеет решений, так как

YZ ≥ YZ− 1Y ≥ 2Z−1Y ≥ YZ

(неравенство 2Z− 1 ≥Z  легко доказать по индукции)

Иначе Y ≥ 3,X ≥ 2  . Тогда

XY = XY −2X2 ≥ 2Y−2X2 ≥ 1X2Y
                      2

(в последнем переходе снова используем неравенство 2Y−1 ≥ Y  )

Y Z = YZ− 1Y ≥ 3Z−1Y > 1Z2Y
                    2

При Z <5  неравенство

3Z−1 > 1Z2
      2

можно проверить вручную, а при Z ≥5  сослаться на доказанное нами неравенство

3Z−1 > 2Z−1 > 1Z2
            2

В итоге, воспользовавшись доказанным и неравенством между средними, получаем:

 Y    Z  1  2   1  2    √-2-2-
X  +Y  > 2X Y + 2YZ  ≥Y  X Z  =XY Z

То есть при Y ≥3,X ≥2  решений нет, так как

 Y    Z
X  + Y > XY Z
Ответ:

 (1;1;2)  , (2;2;2)  , (2;2;3)  , (4;2;3)  , (4;2;4).

Рулетка
Вы можете получить скидку в рулетке!