Тема . Классические неравенства

Неравенство Йенсена

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#100194

Найдите произведение всех значений x  , при каждом из которых

 ∘ --√---x2−9x+11   x2−9x+11   ∘---√-- x2−9x+11
(  4−  11)       , 2       , ( 4+  11)       —арифметическая прогрессия.
Показать ответ и решение

Запишем критерий арифметической прогрессии для трёх чисел, что её второй член является средним арифметическим первого и третьего:

 ∘ --√---x2− 9x+11  ∘ ---√--x2−9x+11    2
(--4−--11)-------+2-(-4+--11)------ =2x −9x+11

Заметим, что

4− √11-+4 +√11-=2⋅22.

Тогда после замены       √ --      √ --
t1 = 4− 11,t2 = 4+ 11,  получаем

a(x)  a(x)  (     )a(x)
t1---+t2--=  t1+-t2
    2         2    ,

где

     x2− 9x+ 11
a(x)= ----2-----.

Рассмотрим функцию f(t)=ta  при t>0.

Если a⁄= 0  и a⁄= 1,  то её вторая производная

f′′(t)= a(a − 1)ta−2

ненулевая и имеет постоянный знак, поэтому функция строго выпукла, так что по неравенству Йенсена равенство

             (      )
f(t1)+2f(t2)= f  t1+2t2

возможно только при t1 = t2,  но в нашем случае t1 = 4− √11⁄= 4+ √11= t2.

Поэтому a =0  или a= 1,  то есть

[
  x2− 9x +11= 0
  x2− 9x +11= 2

Оба уравнения имеют по два различных действительных корня, произведения которых равны 11 и 9 соответственно по теореме Виета. Причём все 4 корня различны (уравнения различны), поэтому произведение всех корней равно 99.

Ответ: 99

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!