Тема ПитерГор (Санкт-Петербургская олимпиада)

Последовательности и прогрессии на Питергоре

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор (санкт-петербургская олимпиада)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#82677

Дана последовательность a
 n  : 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ...
(одна единица, две двойки, три тройки, четыре четверки и т.д.) и еще одна последовательность bn  такая, что abn =ban  для всех натуральных n  .

Известно, что bk = 1  при некотором k> 100  . Докажите, что bm =1  при всех m >k  .

Источники: СПБГОР - 2024, 11.2 (см. www.pdmi.ras.ru)

Подсказки к задаче

Подсказка 1

Для начала давайте поймем что-то про последовательность {a_i}. Как минимум поймем на каких местах у нас стоит число k. Это важно для нас, так как если мы хотим выбрать какое-то конкретное m(и посмотреть откуда же может быть получено противоречие), то нам надо понимать, как связан номер и значение a_m. Как зависит значение от m?

Подсказка 2

Для любых номеров m, которые располагаются между t(t + 1)/2 + 1 и (t + 1)(t + 2)/2, a_m = t + 1. Если от нас требуется доказать, что начиная с какого-то номера у нас b_i = 1, не будем мелочиться и докажем, начиная почти для всех(с какого-то маленького), по индукции. Но давайте, для начала, так сказать, для создания благоприятной обстановки, поймем, как все таки делать индукцию. Ведь переход от n к n + 1 здесь кажется странным. Однако переход от k(k + 1)/2 к (k + 1)(k + 2)/2 выглядит более разумно, ведь мы знаем все значения a_i, для i из этого отрезка.

Подсказка 3

Верно, переход такой нам легко дается, так как a_i из этого промежутка равно t + 1, а значит, это b_(t + 1), но для всех меньших мы доказали. Что осталось написать по этой задаче? Является ли это полным решением?

Подсказка 4

Не является, так как t + 1 не всегда входят в уже доказанный промежуток. Для t = 1, 2 - это неверно. Значит, надо в качестве базы использовать t >= 3. Но это подходит под условие нашей задачи, а значит, если у нас b_k = 1, то и все последующие будут равны 1.

Показать доказательство

Возьмём число m : t(t+1)+ 1≤ m ≤ (t+1)(t+2)
     2             2  , заметим, что для любого такого m  a  = t+1
 m  , тогда b  = b  = a
t+1   am    bm  , тогда если bm =1  , то abm =1  , тогда bt+1 =1  , и наоборот.

Значит, bt+1 = 1 ⇐⇒ bm = 1  для     t(t+1)   (t+1)(t+2)
m ∈ [ 2  + 1;   2   ]

Значит, и bt+1 ⁄=1 ⇐⇒  bm ⁄= 1

Если b3 =1  , то

     2× 3    3× 4
∀m ∈ [-2-+ 1;-2--]:bm = 1 т.е. b4 = b5 =b6 = 1

Докажем тогда по индукции, что ∀m > 3 bm = 1.

База уже есть. Переход будем делать от m ∈ [3;t(t+21)]  к m ∈[3;(t+1)2(t+2)].

Заметим, что t+ 1< t(t+21)  при t>3 ⇒ bt+1 = 1  , но по предположению индукции ∀m ∈ [t(t+21)+ 1≤ m≤ (t+1)2(t+2)]:bm =1  , значит,

∀m ≥3 :bm = 1, если b3 = 1

Аналогичными рассуждениями

∀m ≥3 :bm ⁄= 1, если b3 ⁄= 1

Итого т.к. bk =1  , k> 100  , то b3 =1  , а значит, ∀m > 3  :

bm = 1⇒ ∀m > k bm =1
Рулетка
Вы можете получить скидку в рулетке!