Тема . ТурГор (Турнир Городов)

Базовый вариант весеннего тура Турнира Городов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#38129

Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны. Верно ли, что оси симметрии графиков совпадают?

Источники: Турнир городов - 2017, весенний тур, базовый вариант, 11.5

Показать ответ и решение

Первое решение.

PIC

Рассмотрим y = x2  . Проведём касательную в любой точке A  , кроме вершины. В силу непрерывности (и на самом деле неограниченности) производной найдётся касательная в другой точке B  , перпендикулярная нашей. Затем отразим всю параболу относительно середины X  отрезка AB  . Точки пересечения поменяются местами, касательная в точке A  к исходной параболе перейдёт в параллельную касательную в точке B  к новой параболе, а касательная в точке B  к исходной параболе перейдёт в параллельную касательную в точке A  к новой параболе. Так что к новой параболе касательные останутся перпендикулярны. При этом абсцисса вершины новой параболы будет равна удвоенной абсциссе точки X  , а не нулю, так что оси симметрии у парабол не совпадают.

Второе решение.

Приведём ещё один конкретный пример: f(x)= 1(x2 +6x− 25)
     8  и g(x)= 1(25+ 6x− x2)
      8  . Оси парабол x= ±3  различны, а пересекаются они в точках x= ±5  . Возьмём производные f′(x)= 1(x+ 3),g′(x)= 1(−x +3)
      4            4  . Подставляя 5  и − 5  , получаем произведения тангенсов углов наклона касательных в точках пересечения 1 ⋅8 ⋅ 1⋅(− 2) =− 1
4    4  . То есть касательные действительно перпендикулярны в обеих точках при несовпадающих осях.

Ответ:

нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!