Теория чисел на ЮМШ
Ошибка.
Попробуйте повторить позже
Цель этого сюжета — доказательство следующего утверждения:
Пусть — нечётное простое число. Докажите, что существует ровно
упорядоченных четвёрок
натуральных чисел,
для которых
и
Если — остаток по модулю
то назовём четвёрку (
), удовлетворяющую условиям выше,
-четверкой, если
(mod
1. Докажите, что если -четвёрка существует, то
2. Докажите, что для данного существует не более одной
-четвёрки.
3. Докажите, что если -четверка существует, то
-четвёрки не существует.
4. Докажите, что для всякого существует либо
-четвёрка, либо
-четвёрка.
Источники:
Пункт 1. Подсказка 1
Перепишем требуемое так: доказать, что для r=0, r=1 и r=p-1 r-четвёрки точно нет. Каким путём хочется доказать это утверждение?
Пункт 1. Подсказка 2
Конечно! Давайте пойдём от противного. Если 0-четвёрка существует, то что следует из c ≡ ra (mod p)? Но разве это не противоречит равенству из условия?) Окей... Пусть теперь 1-четвёрка существует. Попробуем аналогично случаю r=0 прийти к противоречию! Какое тогда сравнение по (mod p) можно написать?
Пункт 1. Подсказка 3
Верно! Тогда p = ab + cd ≡ ab + rad = a(b+d) (mod p). Какая делимость отсюда следует? Как можно оценить a и b+d?
Пункт 1. Подсказка 4
Да! Либо a, либо (b+d) делится на p. Значит либо a≥p, либо (b+d)≥p. Хмм... но по условию ab + cd = p... Осталось написать цепочки неравенств и прийти к противоречию! Абсолютно аналогично докажем и для r=p-1.
Пункт 2. Подсказка 1
Опять пойдём от противного. Пусть для одного r существуют две четвёрки: (a,b,c,d) и (a`, b`, c`, d`). Воспользуемся равенством из условия и попробуем связать четвёрки между собой.
Пункт 2. Подсказка 2
Ага. Можно заметить, что ac' ≡ ara' ≡ ca' (mod p). Попробуем аналогично связать b,d и b`,d`.
Пункт 2. Подсказка 3
Тогда ac`- a`c, bd`- b`d кратны р. Предположим, что эти разности одновременно не равны нулю. Попробуем тогда оценить bd`- b`d, пользуясь тем, что ac`- a`c > 0. Какое противоречие получаем?
Пункт 2. Подсказка 4
Да! ac` > p > ab. Отсюда с` > b, c` > d. Не забываем, что bd`- b`d кратно р, но разве оно больше p?) С этим случаем покончено. А что, если всё-таки какая-то разность равна нулю (пусть bd`- b`d=0)? Что можно сказать про делители переменных, исходя из условия ab+cd = p = a`b`+ c`d`? Как связать это с bd`= b`d.
Пункт 2. Подсказка 5
Заметим, что из ab + cd = p = a`b` + c`d` следует, что b и d, b` и d` взаимнопросты. Тогда из bd`= b`d следует, что b=b`, d=d`. Как теперь можно преобразовать равенство ab+cd = a`b` + c`d`? Что из него следует?
Пункт 2. Подсказка 6
Конечо! (a-a`)b=(c-c`)d. Но b и d взаимнопросты. Значит (a-a`) делится на d, (c-c`) делится на b! Обозначим это так: (a-a`)=dx, c-c`)=bx. Осталось рассмотреть случай x>0 и x<0, пользуясь неравенствами между переменными и заключить, что четвёрки совпадают!
Пункт 3. Подсказка 1
Пусть (a,b,c,d), (a`,b`,c`,d`) — две четвёрки, удовлетворяющие условиям с r и c r` = p − r соответственно. Давайте действовать, как в прошлом пункте. Какие тогда цепочки сравнений по mod p тогда можно написать? Какое противоречие с делимость на p получается?
Пункт 3. Подсказка 2
Верно! Можно получить, что ac`+a`c, bd`+b`d кратны p. Аналогично прошлому пункту, пусть с`≥b, тогда с`>c,d. Оценим bd`+b`d>0. Какое противоречие с делимостью на p можно получить?
Пункт 3. Подсказка 3
Да, bd`+b`d = 0, но bd`+b`d >0 !? Окей, пусть c`< b. Попробуем оценить a`c+ac и b`d+bd`. Чему могут быть равны эти выражения (помним, что они краты p).
Пункт 3. Подсказка 4
a`c+ac` < ab+ a`b` < 2p, аналогично b`d+bd`<2p. Тогда, т.к. они делятся на p и больше нуля, то они равны p! А что еще равно p по условию?)
Пункт 3. Подсказка 5
Да! Запишем разность ab + cd и a`c+ac`. Получаем делимость на a. Такс... чего-то не хватает. Вспомним, что четвёрки упорядоченные. Что, если а — наибольшее из всех чисел? Выполняется ли полученная делимость?)
Пункт 4. Подсказка 1
Окей...Давайте искать четверки так: на плоскости рассмотрим все векторы с целыми координатами (x,y), где y≡rx (mod p). Рассмотрим вектор u=(a,c), где сумма a+c минимальная. Что тогда нужно сделать, чтобы доказать существование r-четвёрки (или (p-r)-четвёрки)?
Пункт 4. Подсказка 2
Давайте на прямой с уравнением xc − ya =p (пусть a>c) искать точку (d,−b) такую, что d> 0, d< a,d <b,c<b — тогда четвёрка (a,b,c,d) и будет искомой. С какими прямыми нам теперь нужно работать, чтобы найти иском точку?
Пункт 4. Подсказка 3
Да! Рассмотрим прямую y=-x. Пусть точка (x₀,y₀)∈ℓ с целыми x₀,y₀ лежит выше прямой y+x= 0, а точка v₀=(x₀− a,y₀− c) — (нестрого) ниже. Какие условия теперь надо проверить?
Пункт 4. Подсказка 4
Конечно! Проверим нужные нам неравенства, которы мы писали выше! Проверьте эти условия, пользуясь выбором вектора (сумма координат минимальна).
Пункт 4. Подсказка 5
Теперь выберем наибольшее целое неотрицательное m, при котором x₀−a−ma≥0. Тогда вектор v₀−mu = (x₀−a−ma, y₀−c−mc) — искомый. Какой случай осталось проверить, прежде чем разобраться со случаем с>a?
Пункт 4. Подсказка 6
Осталось только исключить случай x−a−ma =0! Разберём теперь c>a аналогично, просто по сути переобозначив переменные, закончив решение задачи!
1. Требуется исключить варианты Если существует
-четверка
при
то
натуральное кратное
и
тогда
— противоречие.
Пусть существует -четверка
при
Тогда
Получаем, что Тогда либо
либо
делится на
Тогда либо
либо
В первом случаем получаем,
что
Во втором же
Получаем, что
-четверки не существует.
Пусть существует -четверка
при
Тогда
Получаем, что Тогда либо
либо
делится на
Тогда либо
либо
поскольку
В первом случаем получаем, что
Во втором же
Получаем, что
-четверки тоже не
существует.
2. Пусть
— две четверки, удовлетворяющие условиям с одним и тем же
Тогда
аналогично
Т.е.
кратны
Предположим, что эти разности одновременно не равны нулю. Пусть не умаляя общности тогда
т.е.
и тем более
Отсюда получаем, что
откуда (т.к. кратно
получаем
— противоречие.
Пусть теперь одна из исходных разностей равна нулю (не умаляя общности Отметим, что из равенств
следует взаимная простота
и
и
Поэтому из равенства
следует, что
и
а из него —
В силу взаимной простоты
и
имеем
При
это
противоречит условию
при
— условию
. Значит,
— четверки полностью
совпадают.
3. Пусть ,
— две четверки, удовлетворяющие условиям с
и c
соответственно. Тогда
аналогично
Т.е.
кратны
Пусть а значит,
тогда, аналогично прошлому пункту,
— противоречие с делимостью на Значит,
и, аналогично
Тогда
поэтому из
делимости
и аналогично
Предположим теперь, не умаляя общности, что — наибольшее из чисел. Вычитая из
равное ему
получаем
откуда из взаимной простоты
и
получаем, что
делится на
— противоречие с тем, что
4. Рассмотрим на плоскости множество всех векторов с целыми координатами
такими, что
или
Отметим, что это множество вместе с каждым вектором
содержит также и
Рассмотрим в нашем
множестве вектор с минимальной суммой координат. В силу замечания выше можно считать, что вектор
где
(на
осях координат и на биссектрисах углов между ними такой вектор лежать не может, поскольку
если
то переобозначим
и
Предположим пока, что
Рассмотрим прямую
с уравнением
Будем искать точку
на этой прямой такую, что
— тогда четверка
и будет искомой. Заметим, что если
то
Прямая где-то пересекает прямую
Пусть точка
с целыми
лежит выше прямой
а точка
— (нестрого) ниже.
Во-первых, проверим, что В самом деле, в противном случае
Из выбора вектора
имеем
Если , то
— противоречие. Если же то
— снова противоречие.
Итак, Поскольку
имеем
Если
то
и обе координаты
вектора
по модулю не больше, чем
— это опять противоречит выбору
Значит,
и
Теперь выберем наибольшее
целое неотрицательное
при котором
Ясно, что это неотрицательное значение строго меньше, чем
Тогда
вектор
и есть искомый вектор. Действительно, все нужные неравенства уже установлены, осталось только исключить случай
но в таком случае из уравнения прямой
получаем
что невозможно в силу того, что
Наконец обратимся к случаю В этом случае обозначим
и построим точно так же четверку
со всеми
нужными свойствами, но такую, что, наоборот
В этом случае, очевидно,
будет
-четверкой, что нам
подходит.
Ошибка.
Попробуйте повторить позже
— некий полином с целыми коэффициентами,
и
— целые числа. Построим последовательность
, где
, и
и пусть
— остаток от деления
на
.
1. Пусть . Докажите, что период последовательности
(то есть, такое наименьшее
, что
при достаточно больших
) равен 2.
2. Найдите длину предпериода той же последовательности (то есть такое наибольшее , что
, где
—
период).
3. Назовем полином стабильным по модулю , если существует
, такое что для любого
найдется
, для которого
. Докажите, что полином
нестабилен по модулю
, если
является квадратом нечётного
числа.
4. Докажите, что многочлен стабилен для бесконечного числа натуральных
.
Пункт 1, подсказка 1
Если мы докажем, что с какого-то момента a_(n+2) - a_n = a_(n+1) - a_(n-1) (mod 3^2022), то и требуемое тоже будет доказано. Попробуйте выразить a_(n+2) - a_n через a_(n+1) и a_(n-1).
Пункт 1, подсказка 2
Мы получаем, что если a_(n+1) - a_(n-1) делится на 3^k, то и a_(n+2) - an делится на 3^k. Теперь, если мы докажем, что a_(n+1) - a_(n-1) делится на 3^(k+1), то сможем сказать, что с какого-то момента k станет >= 2022. Попробуйте для этого доказать, что a_(n+1) и a_(n-1) имеют одинаковые остатки при делении на 3.
Пункт 1, подсказка 3
Для этого посмотрите на значение a_n по mod 3.
Пункт 2, подсказка 1
Как подсказывает нам прошлый пункт задачи, нужно рассматривать остатки от деления a_n на степени 3. Попробуйте найти таким способом зацикливание.
Пункт 2, подсказка 2
Отлично! Теперь мы знаем, что остатки от деления a_n на 9 и на 27 зацикливаются. Тогда, зная, что степень вхождения 3 в выражение a_(n+1) - a_(n-1) каждый раз растёт, попробуйте вывести рекуррентную формулу для этой степени вхождения.
Пункт 2, подсказка 3
Если v_n - степень вхождения 3 в a_(n+1) - a_(n-1), то v_2 = 1, v_3 = 2, v_(2k+1) = v_2k + 2 и v_(2k+2) = v_(2k+1). Теперь осталось лишь решить неравенство v_k < 2022.
Пункт 3, подсказка 1
Нам нужно определить такое B, чтобы для него нашлось A, такой, что ни один r_k не равен B. Сразу сделать это довольно трудно. Попробуйте для начала подставлять небольшие A и посмотреть на значения полинома.
Пункт 3, подсказка 2
Отлично! Мы знаем, что f(2) = 2. Очень удобно будет доказывать, что есть такое A, что не будет остатка 2, ведь M - квадрат нечётного числа. Осталось лишь подобрать такое A и доказать, что r_k никогда не равен 2. Попробуйте найти A так, чтобы в нём как слагаемое присутствовало q (M = q^2).
Пункт 3, подсказка 3
Можно взять A = 2 + k*q (k и q взаимно просты). Теперь попробуйте рассмотреть f(A) по mod M.
Пункт 4, подсказка 1
Доказать, что это верно для произвольного множество бесконечных чисел, не представляется возможным. Поэтому нужно определить, для каких чисел мы это будем делать. Предыдущие пункты задачи явно подсказывают, что M должна быть степенью какого-то числа. Попробуйте перебирать небольшие числа и посмотреть, является ли стабильным полином по этому модулю.
Пункт 4, подсказка 2
Так, теперь мы знаем, что для 7 многочлен стабилен. Тогда попробуем доказать, что это верно и для 7^k. Легче всего сделать это по индукции. База уже есть, осталось доказать переход. И победа!
1. Легко видеть, что остатки от деления на 3 чередуются с периодом 2 (1, 0, 1, 0, . . .) поэтому период остатков по модулю
тем более не равен 1.
Покажем что он равен 2.
Заметим, что
Отсюда следует, что если делится на
, то тем же свойством обладает и
, а если вдобавок
,
дают
остаток от 1 деления на 3, то
делится на
.
Учитывая, что такая ситуация имеет место при каждом четном , получаем, что соответствующее
может неограниченно увеличиваться,
в частности,
делится на
при некотором
(а значит и при всех
). Поэтому период
равен
двум.
2. Выпишем остатки от деления на 9 и на 27: легко убедиться, что это 2-периодические последовательности
и
соответственно.
Поэтому число не делится на 3 при нечетных
, делится на 3, но не на 9 при
и делится на 9, но не на 27 при
четных
.
То есть если — степень вхождения 3 в число
, то
,
а дальше
и
.
Отсюда легко видеть, что наибольшее такое, что
равно 2022, то есть
— последняя среди разностей вида
не кратная
.
3. Пусть , тогда
- нечетное число.
Заметим, что ,значит, достаточно показать, что существует число, проделывая операцию из условия над которым мы
не получим 2.
Рассмотрим числа вида , где НОД
Нетрудно заметить, что
То есть числа вида , где НОД
переходят в себя, но число 2 не имеет такого вида, поэтому полином
нестабилен по модулю
, если
является квадратом нечётного числа.
4. Индукцией по докажем, что для
многочлен
стабилен.
Обозначим через , то что
База
Таким образом, имеем цикл длины 3 везде одинаковый.
Переход
Пусть по модулю многочлен стабилизируется так, что всегда встретится
Тогда по модулю остаток
будет
, что не зависит от
, при
, что бывает по базе индукции, поэтому многочлен стабилизируется и по модулю
.
Ошибка.
Попробуйте повторить позже
В этом сюжете разрешается использовать (без обоснования) так называемую малую теорему Ферма, гласящую, что для всякого целого числа
и простого натурального числа
справедливо соотношение:
делится на
без остатка.
Итак, — простое число. Маша должна понять, есть ли среди чисел
значения, дающие одинаковые остатки от деления на .
1. Пусть . Докажите, что искомая пара найдётся.
2. Пусть . Докажите, что найдётся искомая пара, содержащая одно из крайних чисел.
3. Докажите, что искомая пара найдётся при .
4. Докажите, что искомая пара найдётся, если , а
- простое.
Источники:
Подсказка 1
Для первых трёх пунктов достаточно использовать малую теорему Ферма с тем лишь дополнением, что во втором и третьем пункте нужно разобрать отдельно случаи с малыми значениями p, а вот в 4 пункте всё интереснее!
Подсказка 2
Перейдём к последнему пункту. Докажем методом "от противного". Будем рассматривать порядки 2 и 3 по модулю p. Чему они могут быть равны?
Подсказка 3
Действительно, варианты: 1, 2, q, 2q = p - 1. Неразобранный случай остался 2q. В нашем предположении в последовательности должны встретиться по разу все ненулевые остатки. Вот бы теперь какое-нибудь утверждение про остатки придумать. Пусть у нас есть два числа меньших q (q > 2), числа x и k. При этом x и остаток kx от деления на q имеют разную чётность. Можем ли мы тогда определить k относительно q? Какое можем получить отсюда следствие?
Подсказка 4
Действительно, k = q-1. Осталось подумать над следствием, и мы уже близки к финалу!
Подсказка 5
Для простого q, нечётного k такого, что 2q не делится на (k+1) найдется l, что остатки чисел l, kl по модулю 2q лежат строго между 0 и q. Во-первых, это не всем известный факт и по-хорошему требует доказательства. Во-вторых, применим это следствие, а дальше изучим сумму по k от 1 до (p - 1) чисел (2^k + 3^k)^(l+r) по модулю p.
1. По МТФ , но в то же время и
.
_________________________________________________________________________________________________________________________________________________________________________________
2. Если , то всё ясно. Если
, то остальное как в предыдущем пункте. Иначе же
. Например, потому что
из МТФ
, значит,
Тогда
______________________________________________________________________________________________________________________________________________________
3. Случаи разбираются руками. Дальше, аналогично предыдущим пунктам, если
, то всё ясно. Иначе
,
а тогда для
Если бы остатки не повторялись, каждый бы встречался по разу, и тогда их сумма была бы равна 0 . Но тут, как мы видим, их сумма равна
_________________________________________________________________________________________________________________________________________________________________________________
4. Предположим, что все остатки различны. Посмотрим на порядки 2 и 3 по модулю . (Порядок
по модулю
-
минимальное натуральное
такое, что
(или числитель соответствующей несократимой дроби,если
- дробь)
кратно
; это
мы будем обозначать
.) По МТФ они могут быть равны лишь
. Первые два
случая проигнорируем, а случаи, когда хотя бы один из порядков равен
, идентичны разобранным в пунктах 1 и 3 .
Пусть порядки
, в частности все остатки
, различны (иначе, если
и
дают одинаковые остатки, то
, а значит и
, кратно
, но
) и найдётся такое
, что
. Отметим также, что в
этом случае
, так что если при некотором
имеем
, то и
, так
что нарушается условие различности остатков. Поэтому в нашей последовательности встречаются по разу все ненулевые
остатки.
_________________________________________________________________________________________________________________________________________________________________________________
Лемма 1. Пусть простое и
таково, что для любого
число
и остаток
от деления на
имеют
разную чётность. Тогда
.
Следствие 1. Пусть простое,
нечётное,
не кратно
. Тогда найдется
такое, что
обоих чисел
остатки по
модулю
заключены строго между
и
.
Доказательство. Действительно, попробуем в качестве все числа от 1 до
. Пусть все пары
не подошли, т.е. все
имеют остатки по модулю
, большие
. Это значит, что чётность остатка
по модулю
противоположна четности
остатка
по модулю
(
- нечётно), а она совпадает с четностью
(т.к.
нечётно), и мы попадаем в условия
леммы.
_________________________________________________________________________________________________________________________________________________________________________________
Подберём по следствию 1 такое , что
при делении на
имеет остаток меньше
, назовём этот остаток
делится на
.
Теперь изучим сумму по модулю
. С одной стороны, выражение в скобках пробегает все ненулевые остатки, а
число
не кратно
, так что эту сумму можно посчитать как сумму геометрической прогрессии с
неединичным знаменателем
, и она равна нулю.
Посчитаем эту же сумму другим способом. Раскрыв все скобки по биному, перегруппировав слагаемые и переставив множители в
показателях степеней, мы получим сумму геометрических прогрессий вида . Докажем, что ровно одна из
этих прогрессий постоянна, а значит, ровно одно из указанных выражений ненулевое (тут надо отметить, что
,
так что
, поэтому появляющиеся биномиальные коэффициенты не кратны
). Это даст требуемое
противоречие.
Действительно, при получаем, учитывая
, что
, т.к.
делится на
. С другой
стороны, если
, при некотором
то, деля, получаем
то есть
. Получаем, что
, значит
равен 1 или 2 , что может быть лишь при
; этот случай проверяется
непосредственно.