Тема . Звезда (только часть с задачами по математике)

Логарифмы на Звезде

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела звезда (только часть с задачами по математике)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#125073

Решите неравенство

 ∘ -------                      ||∘ -------  ||
9  2− log2 x− 2 |4log2x− 7|≤9 log2x− 2|4 2− log2 x− 7|

Источники: Звезда - 2025, 11.1 ( см. zv.susu.ru)

Подсказки к задаче

Подсказка 1

Для начала посмотрим на выражения в обеих частях, а также на коэффициенты при них. Вообще, можно заметить, что они имеют похожий вид, в частности, можно поменять местами выражения с модулями (левое перенести в правую часть, правое - в левую, не забыв поменять знаки). Что тогда можно сказать о выражениях в обеих частях? Чем они похожи, как можно обобщить?

Подсказка 2

Видно, что обе части можно выразить через функцию от переменных sqrt(2 - log₂x) и log₂x. Тогда у нас получится неравенство для значений функции при разных аргументах. Что можно сказать о самой функции?

Подсказка 3

Нетрудно доказать, что функция монотонна и возрастающая, поэтому неравенство на значениях равносильно неравенству на аргументах. Оно уже решается гораздо легче, главное — не забыть про ограничения!

Показать ответ и решение

Перепишем неравенство в виде

∘ -------    ∘-------
9 2− log2x+ 2|4 2 − log2x − 7|≤ 9log2x+ 2|4log2x − 7|

Пусть f(t)=9t+ 2|4t− 7|.  Тогда неравенство принимает вид:

  ∘-------
f( 2− log2x)≤ f(log2x)

Заметим, что функция f  возрастающая, так как при любом раскрывании модуля угловой коэффициент получаемой линейной функции положителен. Следовательно, исходное неравенство равносильно

∘2-−-log-x≤ log x
       2     2

Для решения полученного неравенства выпишем систему

(|{  2− log2 x≥ 0
   log2x≥ 0
|(  2− log2 x≤ log22x

В последнем неравенстве сделаем замену z = log2x,  получим

z2+ z− 2≥ 0

(z− 1)(z+2)≥ 0

z ∈ (− ∞,−2]∪[1,+ ∞)

Учитывая первые два неравенства из системы, получаем, что log x∈[1;2].
  2  Отсюда x∈ [2;4].

Ответ:

 [2;4]

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!