Преобразования тригонометрических выражений
Ошибка.
Попробуйте повторить позже
Сравните числа
Источники:
Подсказка 1
Видим, что углы нетабличные и каждое выражение явно посчитать мы не сможем. Но для сравнения можно поставить знак < или >, а потом равносильными преобразованиями свести к заведомо верному неравенству с тем же знаком. Но как же работать с таким неравенством, если у нас нет формулы деления синусов?
Подсказка 2
Домножить на знаменатели и получить в обеих частях неравенства произведения синусов! Теперь надо подумать: поменяется ли после такого домножения знак неравенства?
Подсказка 3
Для этого можно использовать формулы приведения и свести всё к острым углам. А после применения формулы произведения синусов осталось сравнить косинусы двух острых углов: можете сделать это по тригонометрической окружности :)
По формулам приведения . Аналогично остальные синусы из условия тоже отрицательны.
Поэтому неравенство
равносильно (умножили на произведение двух отрицательных чисел, которое положительно, поэтому знак неравенства сохраняется)
По формулам произведения синусов получаем
Для острых углов чем больше угол, тем меньше косинус (более формально, функция на промежутке убывает), поэтому последнее неравенство справедливо , а значит, и доказываемое неравенство верно.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!