Тема Тригонометрия

Преобразования тригонометрических выражений

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#83297

Пары чисел (x;y)  связаны соотношениями

----sin2x----- -----cosy-----  ------1------
1+cosy− sin2x = 1+ sin2x− cosy = sin2x+ cosy− 1.

Найти наибольшее возможное значение величины cos22x+ sin2y  .

Источники: Росатом-2024, московский вариант, 11.2 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Когда видишь выражение с тригонометрией и дробями, то становится страшно. Но от одного из этого точно можно избавиться и записать систему из трёх уравнений.

Подсказка 2

Уравнения всё ещё не выглядят красиво, но может, тогда их получится разложить на множители?

Подсказка 3

В знаменателях первой и второй дроби есть одинаковое выражение в виде разности некоторого синуса и некоторого косинуса. После домножения на знаменатель это разность может стать одним из множителей. А ещё совсем нетрудно раскладывается на множители выражение получаемое из равенства первой и третей дробей (вспомните про разность квадратов).

Подсказка 4

Тогда получается 4 случая. 3 из них нетрудные. Но случай, когда в обоих выражениях sin2x + cosy + 1 = 0, не так прост. Искомое выражение удобно было бы свести к виду "число = квадрат какого-то выражения", так как это даёт нам хорошую оценку из-за неотрицательности квадрата.

Показать ответ и решение

Преобразуем равенство первого и второго выражений (домножим на знаменатели, приведём подобные и разложим на множители):

(sin2x− cosy)(sin2x +cosy+1)= 0

Аналогично сделаем с равенством первого и третьего выражений:

(sin2x− 1)(sin2x+ cosy +1)= 0

Рассмотрим 4  случая:

1)sin 2x =cosy  и sin2x= 1  . В этом случае cos22x +sin2y =0  .

2)sin 2x =cosy  и sin2x+ cosy +1= 0  , тогда sin2x= cosy = − 1
             2  и cos22x +sin2y = 3
             2  .

3)sin 2x +cosy+1 =0  и sin2x= 1  . Тогда cosy =− 2  , что невозможно.

4)sin 2x +cosy+1 =0  . Запишем cos22x+ sin2y  как 2− sin22x− cos2y  . Теперь вместо sin2x  подставим − 1− cosy  и преобразуем: 1− 2cosy− 2cos2y = 3− 1(1+2 cosy)2
                 2  2  . Видно, что максимум равен 3
2  и он достигается при cosy =− 1
       2  . Осталось заметить, что cosy = sin2x= − 1
             2  не зануляют знаменатели в изначальных равенствах.

Ответ:

 3
2

Ошибка.
Попробуйте повторить позже

Задача 2#83743

Дана последовательность:

        ∘         ∘            n ∘
a1 = cos10 ,a2 =cos100,...,an = cos(10) ,...

Найдите наименьшее значение выражения

a1⋅cosx +(a2+ a2023+a2024)⋅sinx, где x∈ ℝ

Источники: Звезда - 2024, 11.4 (см. zv.susu.ru)

Подсказки к задаче

Подсказка 1

Даны косинусы углов в градусах. Мы же знаем, что косинус — периодичная функция с периодом 360 градусов. Попробуем заметить что-нибудь, связанное с периодичностью косинуса, про аргументы двух соседних членов последовательности, то есть 10^n и 10^(n+1).

Подсказка 2

После того, как мы поняли, что из себя представляют а_2023 и а_2024, осталось преобразовать выражение с x по известным тригонометрическим формулам. В этот момент уже будет понятно, как искать наименьшее значение, ведь тригонометрические функции принимают ограниченные значения.

Показать ответ и решение

Посмотрим на разность градусных мер углов у соседних членов последовательности:

  n   n−1    n−1               n−3          n−3
10 − 10   = 10  (10− 1)=9⋅1000⋅10    =360⋅25⋅10

Если n≥ 3,  то эта разность делится на 360. Тогда косинусы равны, то есть a3 =a4 = ...= a2024.

Преобразуем по известным тригонометрическим формулам:

                    ∘        ∘       ∘         ∘
a2+a2023+ a2024 = cos100 + 2cos1000 =cos100 + 2cos(360 ⋅3− 80)=

= cos(90∘+ 10∘)+ 2cos80∘ =− sin10∘+2 sin10∘ =sin 10∘

Теперь подставим в искомое выражение:

a1⋅cosx +(a2+ a2023+a2024)⋅sinx =

= cos10∘⋅cosx+ sin10∘⋅sinx= cos(x− 10∘)

Наименьшее значение косинуса, как известно, равно − 1.

Ответ:

− 1

Ошибка.
Попробуйте повторить позже

Задача 3#85175

Найдите значение выражения  3-sin141∘
 cos129∘ .

Подсказки к задаче

Подсказка 1

Углы не табличные, значит, нужно как-то избавляться от sin(141°) и cos(129°)

Подсказка 2

Нам помогут формулы приведения! Заметим, что 141 = 270 - 129, теперь мы можем применить соответствующую формулу!

Показать ответ и решение

По формулам приведения имеем:

      ∘         ∘    ∘
3sin141∘-= 3-sin(180∘-−-39∘-)=
cos129     cos(90 + 39 )
     = 3sin39∘= − 3.
       − sin39∘
Ответ: -3

Ошибка.
Попробуйте повторить позже

Задача 4#87410

Найдите угол α,  если известно, что 0< α <90∘ и

     (1+-tg2∘)(1+-tg5∘)−-2
tgα= (1− tg2∘)(1− tg5∘)− 2

Источники: СПБГУ - 2024, 11.2 (см. olympiada.spbu.ru)

Подсказки к задаче

Подсказка 1

На что издалека напоминает уравнение из условия?

Показать ответ и решение

Вспомним формулу тангенса суммы:

  ∘  -tg5∘-+tg2∘
tg7 = 1 − tg5∘tg2∘

Проведём с ней некоторые махинации:

              ∘  ∘     ∘    ∘           ∘       ∘
tg7∘+ 1= 1−-tg5-tg2-+∘tg5∘+tg2-= 2-− (1−-tg2-)∘(1−∘tg5)
              1− tg5 tg2           1− tg5 tg2

Домножим на знаменатель:

(1 − tg2∘)(1− tg5∘)− 2= −(tg7∘+ 1)(1− tg5∘tg2∘)

Если аналогично рассмотреть выражение tg7∘− 1  , то мы получим, что

(1+ tg 2∘)(1 +tg5∘)− 2= (tg7∘− 1)(1− tg5∘tg2∘)

Таким образом,

         ∘         ∘   ∘         ∘      ∘    ∘
tgα = -(tg7∘−-1)(1− tg5-t∘g2)∘-= 1−-tg7∘ =-tg45-−∘tg7-∘ = tg38∘
     −(tg 7 +1)(1− tg5 tg2 )  1+ tg7   1+ tg 45 tg7

Следовательно, α= 38∘ .

Ответ:

 38∘

Ошибка.
Попробуйте повторить позже

Задача 5#88066

Сравните числа (tg1∘+ tg 2∘ +...+ tg44∘)  и 22.

Источники: Межвед - 2024, 11.5 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Попробуем преобразовать сумму тангенсов. На что намекают их аргументы?

Подсказка 2

Если разделить тангенсы на пары: первый с последним, второй с предпоследним и так далее, то сумма аргументов будет 45. Какую формулу тогда нужно применить?

Подсказка 3

Формулу суммы тангенсов! Количество дробей намекает на то, что можно доказать, что каждая из них меньше 1 (дробей 22).

Подсказка 4

В знаменателе можно применить формулу произведения косинусов. Тогда один из них будет всегда равен половине числителя.

Показать ответ и решение

Сгруппируем крайние члены

   ∘     ∘         ∘      ∘     ∘          ∘     ∘
(tg1 +tg2 + ...+tg44 )=(tg1 +tg44 )+...+ (tg22 + tg 23 )

По формуле суммы тангенсов

   ∘      ∘          ∘     ∘   --sin45∘---     ---sin45∘---
(tg1 +tg44)+ ...+ (tg22 + tg23 )= cos1∘cos44∘ +...+cos22∘ cos23∘

Заменим синус от 45 градусов на равный ему косинус и воспользуемся формулой произведения косинусов

  cos45∘           cos45∘        2cos45∘            2cos45∘
cos1∘cos44∘-+...+cos22∘-cos23∘ = cos43∘+-cos45∘ + ...+ cos1∘-+cos45∘

Осталось заметить, что функция f(x)= cosx  убывает на отрезке   π
[0;2]  , а значит, верны неравенства cosn∘ > cos45∘ для всех n ∈{43,41,...,1} , следовательно, верны неравенства cosn∘+ cos45∘ > 2cos45∘ для всех n ∈{43,41,...,1} , т.е. каждое слагаемое в сумме меньше 1. Таким образом, вся сумма меньше 22.

Ответ:

(tg1∘+tg2∘+ ...+ tg44∘)< 22

Ошибка.
Попробуйте повторить позже

Задача 6#88704

Найдите точки плоскости, обе координаты которых являются натуральными числами, меньшими двадцати, и через которые проходит график функции

      2 (πx)
y =4sin  12 .

Укажите все возможные варианты и объясните, почему нет других вариантов.

Источники: САММАТ - 2024, 11.2 (см. sammat.samgtu.ru)

Подсказки к задаче

Подсказка 1

Как можно преобразовать функцию? Какие значения она принимает?

Показать ответ и решение

Применим формулу косинуса двойного угла

      2 πx          πx
y =4sin(12)= 2− 2cos(6 )

Заметим, что y > 0  при    πx
cos(6-)⁄= 0  , то есть x ⁄=12k  . Так как x  — натуральное число меньше 20  , то это условие означает, что x ⁄=12  .

Далее заметим, что при взаимнопростых с шестью x  (то есть x≡ 1,5 (mod 6)  ) число    πx
cos(-6 )  - иррациональное число (для x =1,5,7,11,13,17,19  ) , так как в таком случае

                     √-
cos(πx)=cos(± π+ πk)= ±-3-
   6        6         2

При остальных значениях x  число y  будет натуральным, что можно проверить подстановкой.

Итого получаем пары:

(2;1),(3;2),(4;3),(6;2),(8;3),(9;2),(10;1),(14;1),(15;2),(16;3),(18;2).
Ответ:

 (2;1),(3;2),(4;3),(6;2),(8;3),(9;2),(10;1),(14;1),(15;2),(16;3),(18;2)

Ошибка.
Попробуйте повторить позже

Задача 7#91952

Найдите наибольшее целое число, не превосходящее числа

2+ cos π  3+ sin(π − π )
---3--5+ -----25---2-.

Источники: ДВИ - 2024, вариант 241, задача 1 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

п/5 в аргументе немного настораживает, хотелось бы для начала поработать с ним. Как можно преобразовать синус?

Подсказка 2

В аргументе синуса присутствует также п/2, на какое преобразование это намекает?

Подсказка 3

Преобразуем синус по формуле приведения!

Подсказка 4

После подсчёта осталась незамысловатая дробь…но как быть с cos(п/5) при оценке выражения?

Подсказка 5

Оцените косинус и, вследствие этого, числитель

Показать ответ и решение

Преобразуем по формуле приведения:

  (π   π)      (π  π )      (π)
sin 5 − 2 = − sin 2 −-5 = − cos 5

Теперь приведем исходное выражение к общему знаменателю и приведем подобные слагаемые в числителе:

     π        (π)            π      π         π
2+-cos-5+ 3−-cos-5--= 4+9-+2cos5 −-3cos5-= 13-− cos5
   3         2              6              6

Выделим целую часть:

13-− cosπ5-=2 + 1 − cosπ5
   6        6    6

Заметим, что cosπ∈ (0;1),
   5  поэтому 1 − cosπ5-∈(0;1).
6    6  Тогда наибольшее число, не превосходящее заданного числа, равно 2.

Ответ: 2

Ошибка.
Попробуйте повторить позже

Задача 8#92112

Найдите целое число, задаваемое выражением

     (  π)      (   π)
log1∕2 tg 6 + log1∕2 cos6 .

Источники: ДВИ - 2024, вариант 243, задача 1 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Тут у нас присутствует сумма логарифмов с одинаковым основанием, что можно с ними сделать?

Подсказка 2

При сложении логарифмов с одинаковым основанием результатом будет логарифм с тем же основанием, а в аргументе будет стоять произведение аргументов первоначальных слагаемых.

Подсказка 3

Осталось вспомнить табличные тригонометрические функции, произвести несложные вычисления и записать ответ!

Показать ответ и решение

Воспользуемся свойством суммы логарифмов:

    (  π)       (  π )
log1∕2 tg6  +log1∕2 cos 6 =

      (  π    π)       (  π)
=log1∕2 tg 6 ⋅cos6 = log1∕2 sin6 = 1
Ответ: 1

Ошибка.
Попробуйте повторить позже

Задача 9#92341

Найдите наименьшее целое число, превосходящее число

(16)cos(π∕3)  ( 9 )− sin(π∕6)
 25       +  25        .
Подсказки к задаче

Подсказка 1

Обратите внимание на то, что синус и косинус из условия — это табличные значения! Давайте посчитаем их ;)

Показать ответ и решение

Так как cos(π∕3) = 1,
         2  а − sin(π∕6)= − 1,
           2  то получаем

(   )12  (  )− 12
  1265  +  295    = 45 + 53 = 3175 = 2+ 715

Наименьшее целое число, большее 2+ 715,  это 3.

Ответ: 3

Ошибка.
Попробуйте повторить позже

Задача 10#68021

Тройка действительных чисел A,B,C  такова, что

sinA +sinB + sinC =0

и

cosA+ cosB+ cosC = 0

Найти значение выражения

cos(A − B)+ cos(B − C)+cos(C − A )

Источники: Всесиб-2023, 11.2 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Мы знаем, что в формуле разности косинусов есть произведение синусов и произведение косинусов...А у нас есть условие на суммы синусов и суммы косинусов..Что можно сделать с ними?

Подсказка 2

Возвести в квадрат! В одном выражении будут все попарные произведения синусов, а в другом - косинусов. И тогда остается свернуть эти два выражения в нужное нам)

Показать ответ и решение

Возведём в квадрат каждое из двух уравнений:

({  sin2A+ sin2B +sin2C +2 sinAsin B+ 2sinB sinC +2sin AsinC = 0

(  cos2A+ cos2B + cos2C+ 2cosAcosB + 2cosB cosC +2 cosAcosC =0.

Сложим эти уравнения, используя sin2α +cos2 α= 1,cos(α− β)= cosα cosβ+ sinα sinβ.  Получим:

3+2(cos(A− B)+ cos(B− C)+ cos(C− A))=0

                               3
cos(A− B)+ cos(B− C)+ cos(C− A)= −2.
Ответ:

− 3
 2

Ошибка.
Попробуйте повторить позже

Задача 11#31030

Вычислите

   ∘     ∘    ∘
tg 20 ⋅tg40 ⋅tg80 .
Подсказки к задаче

Подсказка

Домножить на синус аргумента первого тангенса

Показать ответ и решение

   ∘    ∘   ∘  -sin20∘sin40∘sin80∘
tg20tg40 tg80  =cos20∘cos40∘cos80∘

Домножим обе части на      ∘
8sin20 , получим:

8sin220∘sin 40∘sin 80∘
-----sin160∘------=4 sin20∘ ⋅2sin40∘sin80∘ =4sin 20∘(cos40∘− cos120∘)=

                            √-
= 2(sin 60∘− sin20∘)+2sin20∘ =2 ⋅-3= √3.
                            2
Ответ:

 √3

Ошибка.
Попробуйте повторить позже

Задача 12#31041

Найдите значение выражения:

2cos40∘−-cos20∘
    sin20∘
Подсказки к задаче

Подсказка 1

Разложим 2cos(40°) как cos(40°)+cos(40°) и используем формулу разности косинусов в числителе.

Подсказка 2

В числителе должно получиться cos(40°) - sin(10°). У нас нет явной формулы cos(x) - sin(y), но зато есть формула разности косинусов. Что же делать? Преобразуем синус в косинус!

Показать ответ и решение

По формулам

2cos40∘−-cos20∘  cos40∘− 2sin-30∘sin-10∘  cos40∘−-sin10∘-
    sin20∘     =       sin20∘       =    sin20∘    =

  cos40∘− cos80∘  − 2sin60∘ sin(−20∘)          √-
= ---sin20∘----= -----sin20∘-----= 2sin60∘ = 3
Ответ:

 √3

Ошибка.
Попробуйте повторить позже

Задача 13#32985

Найдите значения выражения

  ∘    ∘       ∘    ∘
tg1 ⋅tg2 ⋅...⋅tg 88 ⋅tg89
Подсказки к задаче

Подсказка 1

Правда ли, что tg(α)*ctg(α) = 1? Естественно, правда. Только, правда, пока что здесь не видно подобных связок. Но что, если начать группировать первый с последним, второй с предпоследним и тд?

Подсказка 2

Конечно, tg(89°)=ctg(1°), а tg(1°)*ctg(1°) = 1, ура, классно зателескопили! Правда, один момент мы не учли. Он в серединке всего этого выражения. Когда его учтем, тогда задача и будет решена.

Показать ответ и решение

Распишем как частное синуса и косинуса и применим формулу приведения
    ∘
sin(90 − α)=cosα  :

sin1∘⋅sin2∘⋅...⋅sin89∘   cos89∘⋅cos88∘⋅...⋅cos1∘
cos1∘⋅cos2∘⋅...⋅cos89∘-= cos1∘-⋅cos2∘⋅...⋅cos89∘-=1.
Ответ:

 1

Ошибка.
Попробуйте повторить позже

Задача 14#36671

Докажите равенство:

    ∘      ∘
ctg30 + ctg75 = 2.
Показать доказательство

Первое решение.

    ∘      ∘  cos30∘  cos(45∘+30∘)
ctg30 +ctg75 = sin30∘ + sin(45∘-+30∘) =

      √ - √ -     √-  √-
= √3+ √-6−√-2= 3+--3√-+-3-− 1 =2.
        6+  2       3+ 1

Второе решение.

PIC

Рассмотрим треугольник ABC  , в котором           ∘
∠A= ∠C = 75 и       ∘
∠B = 30 . Проведём высоту CH  , получим прямоугольный △BAH  с углом  ∘
30 , откуда      1     1
AH = 2AB = 2BC  . С другой стороны, из прямоугольных △ACH  и △BAH  имеем                       ∘        ∘          ∘      ∘
BC = BH + HC = AHctg75 +AH ctg30 =AH (ctg75 + ctg30)= 2AH  , откуда и следует требуемое.

Ошибка.
Попробуйте повторить позже

Задача 15#39884

Найдите наименьшее значение выражения

   2       2      4       4
3sinα + 7cos α+ 8sin α+ 12cos α.
Показать ответ и решение

Поскольку

  4      4         2   2          2      2
sinα + cos α= 1− 2sin αcosα = 1− 2cos α(1 − cosα),

то выражение примет вид

      2          2       2       4
3+ 4cosα +8 − 16cosα(1− cos α)+ 4cos α=

= 20cos4α− 12cos2α +11= 20t2− 12t+ 11, t∈ [0,1]

tверш = 1420 = 310 ∈ [0;1],  минимальное значение равно 20⋅1900 − 12⋅130 + 11= 456  .

Ответ:

 46
 5

Ошибка.
Попробуйте повторить позже

Задача 16#91391

Представьте в виде обыкновенной дроби значение выражения

(  3 49π  49π-    3 49π  49π)    49π-
 sin 48 cos16 + cos  48 sin 16  cos 12
Показать ответ и решение

Обозначим α= 49π= π+ -π.
    48     48  Тогда данное выражение равно

(sin3α cos3α+ cos3αsin 3α)cos4α=
    (  3  (   3        )   3   (         3 ))
  = (sin α⋅ 4cos α− 3cosα +co)s α⋅3 sinα− 4sin α  cos4α =
  =  −3sin3αcosα+ 3cos3αsinα cos4α =
  = 3sinα cosα⋅(cos2α − sin2α)cos4α=
    3                3
  = 2sin2αcos2αcos4α= 4sin4α cos4α =
    3       3   (    8π)  3    π   3-
  = 8sin8α= 8sin  8π+ 48 = 8 ⋅sin6 = 16
Ответ:

-3
16

Ошибка.
Попробуйте повторить позже

Задача 17#90865

Вычислите

  π-   2π-    2π-   3π        kπ-   (k-+1)π        2019π-  2020π
tg 43 ⋅tg 43 + tg 43 ⋅tg 43 + ...+ tg 43 ⋅tg 43 + ...+ tg 43  ⋅tg  43  .

Источники: ОММО - 2021, номер 6 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Выражение с 2019-ю слагаемыми! Очевидно, что вручную такое не посчитать. У нас есть длинный ряд с похожими слагаемыми, что вспоминается в первую очередь, когда видим нечто подобное?

Подсказка 2

Телескопические суммы! Правда было бы славно, если бы большинство слагаемых взаимно уничтожилось? Но знаем ли мы какую-нибудь формулу для произведения тангенсов, чтобы они преобразовалось в разности? Может видели как фрагмент где-нибудь…

Подсказка 3

Тангенс разности! Осталось только выразить произведение оттуда и посчитать значение выражения!

Показать ответ и решение

Вспомним формулу

         tgα− tgβ
tg(α− β)= tgα-tgβ-+1-

tgαtgβ = tgα−-tgβ− 1
         tg(α− β)

Значит

  kπ   (k+ 1)π   tg (k+413)π-− tg k4π3
tg 43 ⋅tg-43-- = ----tg π43----− 1

tg π-⋅tg 2π-+ tg 2π-⋅tg 3π+ ...+ tg 2019π⋅tg 2020π-=
  43    43     43    43         43     43

 (  2π    π ) (  3π    2π )     (  2020π    2019π )
=-tg43 −-tg43-+-tg43 −-tg-43-+...+-tg--43-−-tg--43-- − 2019=
                      tg π43

  tg 2020π− tg π      tg(47π− π)− tg π
= ---43tg π--43− 2019= ------tg43 π-----43− 2019 =−2021
        43                   43
Ответ: -2021

Ошибка.
Попробуйте повторить позже

Задача 18#61176

Сравните числа

sin2016∘-    sin2018∘-
sin2017∘  и  sin2019∘

Источники: ОММО-2017, номер 6, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Видим, что углы нетабличные и каждое выражение явно посчитать мы не сможем. Но для сравнения можно поставить знак < или >, а потом равносильными преобразованиями свести к заведомо верному неравенству с тем же знаком. Но как же работать с таким неравенством, если у нас нет формулы деления синусов?

Подсказка 2

Домножить на знаменатели и получить в обеих частях неравенства произведения синусов! Теперь надо подумать: поменяется ли после такого домножения знак неравенства?

Подсказка 3

Для этого можно использовать формулы приведения и свести всё к острым углам. А после применения формулы произведения синусов осталось сравнить косинусы двух острых углов: можете сделать это по тригонометрической окружности :)

Показать ответ и решение

По формулам приведения sin2016∘ = sin(360∘⋅5+ 180∘+ 36∘) =− sin36∘ < 0  . Аналогично остальные синусы из условия тоже отрицательны.

Поэтому неравенство

sin2016∘     sin 2018∘
sin2017∘  <  sin-2019∘

равносильно (умножили на произведение двух отрицательных чисел, которое положительно, поэтому знак неравенства сохраняется)

sin2016∘⋅sin2019∘ < sin2017∘⋅sin2018∘

По формулам произведения синусов получаем

   ∘        ∘     ∘        ∘          ∘     ∘
cos3 − cos4035 < cos1 − cos4035 ⇐ ⇒   cos3 < cos1

Для острых углов чем больше угол, тем меньше косинус (более формально, функция f(x)= cosx  на промежутке (0;π)
  2  убывает), поэтому последнее неравенство справедливо , а значит, и доказываемое неравенство верно.

Ответ:

sin2016∘     sin-2018∘
sin2017∘  <  sin 2019∘

Ошибка.
Попробуйте повторить позже

Задача 19#31042

Найдите значение выражения:

  4-π    4 5π-    4 19π    4 23π
sin 24 + cos 24 + sin 24 + cos 24
Подсказки к задаче

Подсказка 1

Сделаем из четырёх аргументов два, заметив, что sin⁴(x) = sin⁴(180°-x) и cos⁴(x)=cos⁴(180°-x)

Подсказка 2

Отлично, получилось sin⁴(a)+cos⁴(a)+sin⁴(b)+cos⁴(b). Есть некоторый намек на основное триг. тождество, но ведь в нём только вторые степени... Возведем ОТТ для обоих аргументов в квадрат и сложим их!

Подсказка 3

Да, получилось выражение, которое равно 2, потому что сложили два ОТТ, и в нём есть наше искомое выражение и два выражения, которые сворачиваются к виду sin²(2α)/2. Нужно применить к ним сумму синусов и остаётся только счет :)

Показать ответ и решение

По формулам приведения

  4 π    4 5π    4 19π   4 23π
sin 24 +cos 24 + sin 24-+ cos-24 =

     π      5π     5π      π
= sin424 + cos424 + sin424 +cos424.

Здесь есть что-то похожее на sin2x +cos2x =1  , но только с четвертыми степенями, поэтому возведем это тождество в квадрат: sin4x+cos4x+ 2cos2xsin2x= 1  .

Так как               2
2cos2x sin2x= sin2(2x)  , то                  2
sin4x+ cos4x= 1− sin2(2x)  . Применим это тождество к нашему выражению. Получится

2− sin2 π12 +-sin2 51π2
        2

Теперь применим тождество

   π
sin(2 − x)= cosx

И получается

   sin2 π-+cos2 π-     1
2− ----12-2----12 = 2− 2 = 1,5.
Ответ:

 1,5

Ошибка.
Попробуйте повторить позже

Задача 20#84840

Найдите значение выражения

    ∘       ∘
ctg 50 − 4cos50
Показать ответ и решение

Распишем котангенс

cos50∘− 4 cos50∘sin50∘
------sin50∘-------

Применим формулу синуса двойного угла

cos50∘− 2sin100∘
----sin50∘-----

Подставляя sin100∘ = sin(90∘+ 10∘)= cos10∘ , получим

     ∘      ∘       ∘      ∘      ∘
cos50-− 2c∘os10 = cos50-−-cos10∘−-cos10
     sin50              sin50

По формуле разности косинусов получаем

−-2sin30∘sin20∘− cos10∘ = − sin20∘+-cos10∘
       sin 50∘              sin50∘

Подставляя cos10∘ = cos(90∘− 80∘)= sin80∘ , получим

     ∘      ∘
− sin20-+-sin∘80
     sin50

По формуле суммы синусов получаем

− 2sin50∘cos30∘= −√3-
     sin50∘
Ответ:

− √3

Рулетка
Вы можете получить скидку в рулетке!