Тема . Тригонометрия

Преобразования тригонометрических выражений

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83297

Пары чисел (x;y)  связаны соотношениями

----sin2x----- -----cosy-----  ------1------
1+cosy− sin2x = 1+ sin2x− cosy = sin2x+ cosy− 1.

Найти наибольшее возможное значение величины cos22x+ sin2y  .

Источники: Росатом-2024, московский вариант, 11.2 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Когда видишь выражение с тригонометрией и дробями, то становится страшно. Но от одного из этого точно можно избавиться и записать систему из трёх уравнений.

Подсказка 2

Уравнения всё ещё не выглядят красиво, но может, тогда их получится разложить на множители?

Подсказка 3

В знаменателях первой и второй дроби есть одинаковое выражение в виде разности некоторого синуса и некоторого косинуса. После домножения на знаменатель это разность может стать одним из множителей. А ещё совсем нетрудно раскладывается на множители выражение получаемое из равенства первой и третей дробей (вспомните про разность квадратов).

Подсказка 4

Тогда получается 4 случая. 3 из них нетрудные. Но случай, когда в обоих выражениях sin2x + cosy + 1 = 0, не так прост. Искомое выражение удобно было бы свести к виду "число = квадрат какого-то выражения", так как это даёт нам хорошую оценку из-за неотрицательности квадрата.

Показать ответ и решение

Преобразуем равенство первого и второго выражений (домножим на знаменатели, приведём подобные и разложим на множители):

(sin2x− cosy)(sin2x +cosy+1)= 0

Аналогично сделаем с равенством первого и третьего выражений:

(sin2x− 1)(sin2x+ cosy +1)= 0

Рассмотрим 4  случая:

1)sin 2x =cosy  и sin2x= 1  . В этом случае cos22x +sin2y =0  .

2)sin 2x =cosy  и sin2x+ cosy +1= 0  , тогда sin2x= cosy = − 1
             2  и cos22x +sin2y = 3
             2  .

3)sin 2x +cosy+1 =0  и sin2x= 1  . Тогда cosy =− 2  , что невозможно.

4)sin 2x +cosy+1 =0  . Запишем cos22x+ sin2y  как 2− sin22x− cos2y  . Теперь вместо sin2x  подставим − 1− cosy  и преобразуем: 1− 2cosy− 2cos2y = 3− 1(1+2 cosy)2
                 2  2  . Видно, что максимум равен 3
2  и он достигается при cosy =− 1
       2  . Осталось заметить, что cosy = sin2x= − 1
             2  не зануляют знаменатели в изначальных равенствах.

Ответ:

 3
2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!