Тема . Тригонометрия

Преобразования тригонометрических выражений

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88704

Найдите точки плоскости, обе координаты которых являются натуральными числами, меньшими двадцати, и через которые проходит график функции

      2 (πx)
y =4sin  12 .

Укажите все возможные варианты и объясните, почему нет других вариантов.

Источники: САММАТ - 2024, 11.2 (см. sammat.samgtu.ru)

Подсказки к задаче

Подсказка 1

Как можно преобразовать функцию? Какие значения она принимает?

Показать ответ и решение

Применим формулу косинуса двойного угла

      2 πx          πx
y =4sin(12)= 2− 2cos(6 )

Заметим, что y > 0  при    πx
cos(6-)⁄= 0  , то есть x ⁄=12k  . Так как x  — натуральное число меньше 20  , то это условие означает, что x ⁄=12  .

Далее заметим, что при взаимнопростых с шестью x  (то есть x≡ 1,5 (mod 6)  ) число    πx
cos(-6 )  - иррациональное число (для x =1,5,7,11,13,17,19  ) , так как в таком случае

                     √-
cos(πx)=cos(± π+ πk)= ±-3-
   6        6         2

При остальных значениях x  число y  будет натуральным, что можно проверить подстановкой.

Итого получаем пары:

(2;1),(3;2),(4;3),(6;2),(8;3),(9;2),(10;1),(14;1),(15;2),(16;3),(18;2).
Ответ:

 (2;1),(3;2),(4;3),(6;2),(8;3),(9;2),(10;1),(14;1),(15;2),(16;3),(18;2)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!