Тема . Задачи №21 из банка ФИПИ

.00 №21. Тип 1

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №21 из банка фипи
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92753

Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 60 км. На следующий день он отправился обратно в A, увеличив скорость на 10 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.

Источники: Банк ФИПИ

Показать ответ и решение

Пусть скорость велосипедиста на пути из A в B равна x  км/ч. Тогда скорость на пути из B в A равна x + 9  км/ч. Составим таблицу:

|--------|Скорость, км/ч|Время, ч|Путь, км|
|--------|--------------|--------|--------|
|  Туда  |      x       |  60    |   60    |
|--------|--------------|---x----|--------|
|О братно |    x+ 10     | -60--  |   60    |
--------------------------x+-10-----------|

По условию время, затраченное на обратный путь, вместе с трёхчасовой остановкой такое же, как и время, затраченное на путь из A в B. Составим уравнение:

         -60--+ 3 = 60
         x+ 10      x
       --60- − 60+ 3= 0
       x + 10   x
  60x−-60(x-+10)+-3x(x+-10)
          x(x+ 10)        = 0
(
|{ 60x − 60(x+ 10)+ 3x(x + 10)= 0
|( x⁄= 0
  x⁄= −10

Решим первое уравнение системы:

 60x− 60(x +10)+ 3x(x+ 10)= 0
60x − 60x− 60⋅10+ 3x2+ 30x= 0
     3x2+ 30x− 60⋅10= 0
        2
       x + 10x− 200 = 0

Найдем дискриминант полученного уравнения:

     2                2
D =10 + 4⋅200= 900= 30

Тогда

⌊   − 10+ 30       [
|x= ----2---        x= 10
⌈   −-10−-30   ⇔    x= −20
 x=     2

Корень x = −20  не подходит по смыслу задачи, так как x > 0.  Поэтому скорость велосипедиста на пути из A в B равна 10 км/ч, следовательно, его скорость на пути из B в A равна 10 +10 =20  км/ч.

Ответ: 20 км/ч
Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения задачи верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!