Тема . Последовательности и прогрессии

Комбинация арифметической и геометрической прогрессий

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела последовательности и прогрессии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#31043

Известно, что числа

x,y,z

образуют в указанном порядке арифметическую прогрессию с разностью α= arccos(− 2)
          5 , а числа

3+ sinx,3+sin y,3+ sinz

образуют в указанном порядке непостоянную геометрическую прогрессию. Найдите sin y  .

Источники: Физтех-2017, 11.3 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Решать задачу с 3 переменными, конечно, полная жуть. К тому же, если нам надо найти sin(y), то удобно в конце концов получить что-то хорошее относительно него. Поэтому , используя условие на x, y, z, как мы можем облегчить себе жизнь?

Подсказка 2

Верно, можем обозначить x, как y-α, а z, как y+α, и подставить вместо них соответственно. Подумаем теперь над второй тройкой чисел. Они образуют геометрическую прогрессию. Но что нам известно про тройку таких членов?

Подсказка 3

Ага, ведь произведение крайних членов равно квадрату среднего. Теперь можно попробовать свести всё к решению уравнения относительно sin(y). Осталось только понять, что, если нам известно arccos(-2/5), то sin(α) и cos(α) мы без проблем найдём, учитывая ограничение.

Показать ответ и решение

По условию cosα =− 2
       5  . Тогда sin2α =1 − cos2α = 21
                25  . Так как α =arccos(− 2)
          5 , то α∈ [0,π]  , и значит, sinα ≥0  и sinα= √21
       5  .

По условию x= y− α  и z = y+ α  .

Тогда

                                2     √21-
3+ sinx= 3+ sinycosα− cosysinα = 3− 5siny− -5- cosy

3+sin y

                                      √ --
3+ sinz = 3+ sinycosα+ cosysinα = 3− 2siny+--21 cosy
                                5      5

образуют геометрическую прогрессию.

Раз это числа вида a, at, at2  , то среднее в квадрате равно произведению крайних. Значит

                    √--               √--
(3 +siny)2 = (3 − 2siny+-21 cosy)(3− 2siny− -21cosy)
              5      5         5       5

       2      2    2   √21    2      2    2  21     2
(3+ siny) =(3− 5sin y)− (-5-cosy)= (3− 5siny) − 25(1− sin y)

9+6siny+ siny2 = 9− 125-siny+ 425siny2− 2215 + 2215siny2

6siny =− 12siny− 21
        5      25

42siny =− 21
         5

siny =− 1-
       10
Ответ:

−-1
 10

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!