Комбинация арифметической и геометрической прогрессий
Ошибка.
Попробуйте повторить позже
Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?
Источники:
Подсказка 1
Понятно, что чисел хотя бы 5. Немного пописав, приходим к выводу: задача была бы слишком простой, если бы ответ был бы 5 и пример находился бы просто. Поэтому попробуем доказать, что чисел хотя бы 6. Попробуем от противного, а далее попробуем найти пример на 6.
Подсказка 2
Раз уж доказываем от противного, как-то стоит эти числа записать. Работать с числами из геометрической последовательности удобнее, поэтому запишем все 5 членов через первый член и знаменательно прогрессии. Для каких из них можно записать условие на принадлежность к одной арифметической прогрессии?
Подсказка 3
Для первого, третьего и пятого члена геометрической последовательности. Помним, что удвоенный член арифметической последовательности равен сумме его соседей. Попробуем с помощью преобразований прийти к противоречию. Теперь немного попишем и попробуем найти пример на 6!
Подсказка 4
Ясно, что нам нужны и отрицательные числа тоже, тогда в геометрической прогрессии знаки членов будут противоположны. Искать среди больших чисел ну очень неудобно, поэтому попробуем найти какие-то маленькие числа, например, 1 и т.д...
(Оценка) Покажем, что никакие пять различных чисел не удовлетворяют условию задачи. Предположим противное: пусть найдутся пять различных целых чисел, одновременно образующих геометрическую и (возможно в другом порядке) арифметическую прогрессию. Тогда они имеют вид где Заметим, что по определению геометрической прогрессии. Числа всегда одного знака и в арифметической прогресии идут либо подряд при либо через одного при В любом случае должно выполняться равенство т.е. откуда но тогда среди чисел есть равные. Противоречие. Следовательно, пяти чисел недостаточно.
(Пример) Приведём пример шести целых чисел, удовлетворяющих условию:
Действительно, числа образуются геометрическую прогрессию, а числа - арифметическую прогрессию.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!