Комбинация арифметической и геометрической прогрессий
Ошибка.
Попробуйте повторить позже
Три различных положительных числа являются тремя последовательными членами арифметической прогрессии. Могут ли эти же три числа оказаться тремя (не обязательно последовательными) членами геометрической прогрессии?
Попробуем подобрать пример. Пусть члены арифметической прогрессии имеют вид Ясно, что эти числа не могут быть последовательными членами геометрической прогрессии, потому что Попробуем рассмотреть геометрическую прогрессию, в которой и — последовательные, а между и есть один член, тогда справедливо равенство После домножения на знаменатели, привидения подобных и деления на мы получим равенство Чтобы свести его к уравнению от одной переменной, положим , тогда оно примет вид Это уравнение имеет корень Осталось заметить, что числа при положительном подходят к условию.
+ верное решение
± верное решение с небольшими недочётами (например, арифметическая ошибка, не влияющая на ход решения)
+/2 задача явно сведена к решению полиномиального уравнения третьей степени или выше от знаменателя геометрической прогрессии, но не доказано (или доказано неверно) существование отличного от 1 решения
-. приведено доказательство невозможности в случае рациональных чисел или последовательных членов геометрической прогрессии
- решение не соответствует ни одному из критериев выше
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!