Комбинация арифметической и геометрической прогрессий
Ошибка.
Попробуйте повторить позже
Третий, четвёртый, седьмой и последний члены непостоянной арифметической прогрессии образуют геометрическую прогрессию. Найдите число членов этой арифметической прогрессии.
Пусть — -ый член арифметической прогрессии, — знаменатель геометрической прогрессии. По условию
Пусть — разность арифметической прогрессии, тогда имеем
Вычитая из второго уравнения первое, получаем
Так как прогрессия непостоянная, то можем поделить на и получить
Подставляя это значение в систему, получаем
Поделив на , имеем
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!