Тема . Классические неравенства

Неравенства Мюрхеда и Шура

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#91087

Для положительных чисел a,b,c  докажите неравенство

(a+-b− c)2 (b+c−-a)2-  (c+-a−-b)2-
    ab    +    bc    +    ca    ≥3
Подсказки к задаче

Подсказка 1

Перед нами симметричное относительно a, b и c неравенство. Они часто решаются с помощью неравенства Мюрхеда и неравенства Шура. Попробуйте применить какое-нибудь из них.

Подсказка 2

Домножьте на знаменатели, раскройте скобки и примените неравенство Шура.

Показать доказательство

Домножим на abc,  раскроем скобки, после этого имеем:

T3,0,0(a,b,c)+ T1,1,1(a,b,c)≥ 2T2,1,0(a,b,c)

что очевидно по неравенству Шура.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!