Тема . ДВИ по математике в МГУ

Оптимизация на ДВИ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дви по математике в мгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#91243

Положительные числа a,b,c  удовлетворяют соотношению

 √ --  √--  √ --
a  bc+ b ca+ c ab =1.

Найдите наименьшее возможное значение выражения a +b+ c  .

Источники: ДВИ - 2023, вариант 236, задача 6 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Попробуем как-то связать a+b+c с выражением из условия. Так как нам хочется найти минимум a+b+c, то хочется оценить сверху выражение из условия. А в каком известном неравенстве присутствуют произведения в корнях?

Подсказка 2

В силу неравенства между средним арифметическим и средним геометрическим мы можем оценить выражение из условия!

Подсказка 3

1 ≤ ab + bc + ac. Когда достигается равенство? А давайте теперь вспомним выражение, в котором присутствует a+b+c и ab+bc+ac!

Подсказка 4

Оценим (a+b+c)²!

Показать ответ и решение

В силу неравенства между средним арифметическим и средним геометрическим

    √ --  √--  √ --    b+c-   c+-a    a+-b
1 =a  bc+ b ca+ c ab≤a ⋅ 2  +b⋅  2 + c⋅ 2  = ab+ bc+ ac

При этом равенство достигается при a =b =c.  С другой стороны,

       2   2   2  2               1  2       2    2      2    2       2
(a+b+ c) =a + b +c + 2(ab+ bc+ac)= 2((a − 2ab+ b )+(b − 2bc+c )+ (a − 2ac +c ))+ 3(ab+ bc+ac)≥ 3(ab+bc+ ac)

При этом равенство, опять же, достигается при a= b= c.  Таким образом,

        √- √ --------- √ -
a+b +c≥  3⋅  ab +bc+ ac ≥  3

и равенство достигается при          -1
a =b= c= √3.  Остается убедиться, что при таких значениях a, b, c  данное в условии соотношение имеет место. Стало быть наименьшее значение выражения a+ b+ c  равно √-
 3.

Ответ:

 √3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!