Системы в тригонометрии
Ошибка.
Попробуйте повторить позже
Известно, что
и
Найдите все возможные значения выражения , если известно, что их не менее двух.
Подсказка 1
Снизу у нас 2cos(2x)-1, а сверху cos(3x). Попробуйте выразить и то, и то через cos(x) и что-то заметить.
Подсказка 2
Как можно заметить, cos(3x)/(2cos(2x)-1)=cos(x). Попробуйте сделать тоже самое со вторым уравнением. Что можно сделать после подобных преобразований с этой системой?
Подсказка 3
Второе уравнение можно преобразовать, если выразить все через sin(x). Теперь, когда мы преобразовали, нужно подумать, как дальше решать подобную систему. Обычно системы решаются либо выражением каких-то переменных и последующей подстановкой, либо сложение/умножением целых равенств из этой системы. Подстановка здесь не кажется удачной идеей, так как синус и косинус не очень явно связаны друг с другом и подставляя, к примеру, синус, выраженный из второго равенства, сложно будет полностью избавиться от икса в первом. Громоздко. Умножение также не кажется интересным, так как слева у нас как раз дробь, справа слагаемые. Будет много слагаемых после раскрытия скобок. Тоже не удобно. Остается сложение:)
Подсказка 4
Действительно, если сложить эти два неравенства, то слева будет сумма дробей, а справа 2(сумма констант, равная 1, плюс по ОТТ единичка). Приведем к общему знаменателю и домножим на него. Что это дает? Какие случаи нужно рассмотреть?
Подсказка 5
Выходит, что sin(x+y)=sin(2y). Отсюда два варианта: 1)x+y=2y+2pi*k; 2)x+y=pi-2y+2pi*k. Второй случай сразу дает ответ на задачу. А что насчет первого? Получается, что x=y+2pi*k. Значит cos(x+3y)=cos(4y)=2cos^2(2y)-1. Осталось найти cos^2(2y) и задача решена. Попробуйте подставить в первое уравнение, доказанное ранее, x=y+2pi*k.
Заметим, что , а . Значит, нам дано
и некоторые ограничения на и
Сложим эти 2 уравнения:
-
Если , то по условию
Тогда .
- Если , то .
Значит, возможные значения — это и . Какие-то из них могли бы не достигаться из-за ОДЗ, но мы точно знаем, что значений хотя бы 2 и поэтому они оба достигаются.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!