Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#32375

Решите систему

{  − ctg xctgy− ctgy +|ctgx − ctgy− 3ctgxctgy|=0;
   √3−-tgx-+tgy+ tg y− 5 =0.
Подсказки к задаче

Подсказка 1

Посмотрите на эту систему. Что в этой системе кажется наиболее инородным? Модуль. Что мы привыкли делать с ним? Раскрывать по определению(чаще всего именно так, потому что работать напрямую с модулем, зачастую, затруднительно). Сделайте тоже самое.

Подсказка 2

Если раскрыть модуль с минусом, то из первого уравнения выходит, что либо ctg(x)=0 , либо ctg(y)=1/2. Но ctg(x)!=0, так как тангенс тоже должен быть определен. Поэтому ctg(y)=1/2. Значит tg(y)=2. Подставляя это во второе уравнение найдем первую серию решений(не забывая проверить то, что модуль был раскрыт верно и ОДЗ выполнено). Теперь осталось раскрыть модуль другим способом.

Подсказка 3

Второй случай не дает ответов сразу. У нас получается выражение, где все завязано на котангенсах, но при этом, если мы планируем в явном виде подставить выражение, к примеру , tg(x) во второе уравнение, то нам надо связь из котангенсов переделать в связь на тангенсы. Как это сделать?

Подсказка 4

Для начала, можно выразить ctg(y) через ctg(x), а потом перевернуть дробь(которая будет получена при выражении ctg(y) ) и заменить ctg(x) на 1/tg(x). И получим в явном виде , выраженное через tg(x), значение tg(y) . Остается подставить это во второе уравнение и найти его корни, после чего проверить так ли мы раскрыли модуль и учесть ОДЗ.

Показать ответ и решение

ОДЗ: x⁄= πk
    2  , x⁄= πk
    2  и 3− tgx+ tgy ≥0  , tgy− 5≤ 0  .

Из второго уравнения на ОДЗ следует, что         2
− tgx= tg y− 11tgy+ 22 (∗)  .

Раскроем модуль одним способом:

− ctgxctgy− ctgy− (ctgx− ctgy − 3ctgxctgy)= − ctgxctg y− ctgx+ 3ctgxctgy = 0

ctgx ⁄=0  , поэтому 2ctgy =1  . Значит, tgy =2  . Подставим это во второе уравнение:

∘ ------
  5− tgx− 3= 0

Тогда tgx = −4  . Осталось подстановкой проверить, что для полученного решения модуль был раскрыт верно.

Теперь раскроем модуль другим способом.

− ctgxctgy − ctgy+ (ctgx− ctgy− 3ctgx ctgy)=

=− 4ctgxctgy− 2ctgy+ ctgx =0

Домножим на tg xtgy  :

−4 − 2tgx+ tgy = (∗)= −4+ 2(tg2y− 11tgy +22)+tgy =

=2tg2y− 21tgy +40= (tgy − 8)(2tgy− 5)= 0

Если tgy = 8  , то         2
tgx= −(tg y− 11tgy+ 22)= 2  и при подстановке это не подходит.

Если tgy = 2.5  , то         2
tgx= −(tgy − 11tgy+ 22)= −0.75  и при подстановке это не подходит.

Ответ:

 (− arctan4+ πn;arctan2 +πk), n∈ ℤ,k∈ ℤ

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!