Преобразования с целой и дробной частями
Ошибка.
Попробуйте повторить позже
Сумма дробных частей нескольких положительных чисел равна целой части их произведения. Докажите, что дробная часть суммы этих чисел равна произведению их целых частей. Напомним, что целая часть числа — это наибольшее целое число, не превосходящее (например ), а дробная часть числа задается формулой
Источники:
Если дробная часть числа равна целому числу, то это Значит, надо доказать, что сумма наших чисел — целое число и произведение их целых частей равно Первое очевидно, так как по условию сумма дробных частей наших чисел — целое число. Допустим, второе неверно. Тогда у всех наших чисел целые части не меньше и мы имеем
откуда что невозможно.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!