.02 Кинематика криволинейное движение. (Не формат ЕГЭ)
Ошибка.
Попробуйте повторить позже
Тело брошено с поверхности земли под углом к горизонту со скоростью Пренебрегая сопротивлением воздуха, определите скорость (модуль и направление) и координаты тела на осях и через время после начала движения.
Спроецируем вектор скорости и ускорения на каждую ось:
Запишем уравнение движения и зависимость скоростей на каждую ось:
С учетом начальных условий получаем:
Найдем проекции скоростей через 1,5 с:
Найдем длину вектора скорости, зная его проекции, через теорему Пифагора:
Направление вектора задается через его проекции с помощью тангенса угла в прям. треугольнике (см. рисунок). Так как проекция по оси y отрицательна, то это означает, что вектор направлен вниз.
Теперь найдем координаты тела через 1,5 с:
Критерии оценивания выполнения задачи | Баллы |
Приведено полное решение, включающее следующие элементы: | 3 |
I) записаны положения теории и физические законы, | |
закономерности, применение которых необходимо для решения | |
задачи выбранным способом (в данном случае - формулы кинематики равномерного и равноускоренного движения); | |
II) описаны вновь вводимые в решении буквенные обозначения | |
физических величин (за исключением обозначений констант, | |
указанных в варианте КИМ, обозначений величин, используемых | |
в условии задачи, и стандартных обозначений величин, | |
используемых при написании физических законов); | |
III) проведены необходимые математические преобразования | |
и расчёты (подстановка числовых данных в конечную формулу), | |
приводящие к правильному числовому ответу (допускается решение | |
«по частям» с промежуточными вычислениями); | |
IV) представлен правильный ответ с указанием единиц измерения | |
фиизческой величины | |
Правильно записаны все необходимые положения теории, | 2 |
фиизческие законы, закономерности, и проведены необходимые | |
преобразования, но имеется один или несколько из следующих | |
недостатков. | |
| |
Записи, соответствующие пункту II, представлены не в полном | |
объёме или отсутствуют. | |
И(ИЛИ)
| |
В решении имеются лишние записы, не входящие в решение | |
(возможно, неверные), которые не отделены от решения и не | |
зачёркнуты | |
И(ИЛИ)
| |
В необходимых математических преобразованиях или вычислениях | |
допущены ошибки, и(или) в математических преобразованиях/ | |
вычислениях пропущены логически важные шаги. | |
И(ИЛИ)
| |
Отсутствует пункт IV, или в нём допущена ошибка (в том числе | |
в записи единиц измерений величины) | |
Представлены записи, соответствующие одному из следующих | 1 |
случаев. | |
Представлены только положения и формулы, выражающие | |
физические законы, применение которых необходимо для решения | |
данной задачи, без каких-либо преобразований с их | |
использованием, направленных на решение задачи. | |
ИЛИ
| |
В решении отсутствует ОДНА из исходных формул, необходимая | |
для решения данной задачи (или утверждение, лежащее в основе | |
решения), но присутствуют логически верные преобразования | |
с имеющимися формулами, направленные на решение задачи. | |
ИЛИ
| |
В ОДНОЙ из исходных формул, необходимых для решения данной | |
задачи (или в утверждения, лежащем в основе решения), допущена | |
ошибка, но присутствуют логически верные преобразования | |
с имеющимися формулами, направленные на решение задачи | |
Все случаи решения, которые не соответствуют вышеуказанным | 0 |
критериям выставления оценок в 1, 2, 3 балла | |
Максимальный балл | 3 |
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!