3.10 Прямоугольный параллелепипед
Готовиться с нами - ЛЕГКО!
Ошибка.
Попробуйте повторить позже
Найдите объём многогранника, вершинами которого являются вершины
прямоугольного параллелепипеда
у которого
Источники:
Объем пирамиды вычисляется по формуле
где — площадь основания пирамиды,
— ее высота.
В основании пирамиды лежит прямоугольник
Высота пирамиды совпадет с боковым ребром
Тогда объем пирамиды
равен
Ошибка.
Попробуйте повторить позже
В прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем пирамиды вычисляется по формуле
где — площадь основания пирамиды,
— ее высота.
В основании пирамиды лежит прямоугольник
Высота пирамиды совпадет с боковым ребром
Тогда объем пирамиды
равен
Ошибка.
Попробуйте повторить позже
Найдите объём многогранника, вершинами которого являются вершины
прямоугольного параллелепипеда
у которого
Источники:
Объем пирамиды вычисляется по формуле
где — площадь основания пирамиды,
— ее высота.
В основании пирамиды лежит прямоугольник
Высота пирамиды совпадет с боковым ребром
Тогда объем пирамиды
равен
Ошибка.
Попробуйте повторить позже
В прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем пирамиды вычисляется по формуле
где — площадь основания пирамиды,
— ее высота.
В основании пирамиды лежит треугольник
Высота
пирамиды совпадет с боковым ребром
Тогда объем пирамиды равен
Площадь треугольника равна половине площади прямоугольника
Ребра параллелепипеда и
параллельны, следовательно,
равны. Найдем объем пирамиды
воспользовавшись полученными
равенствами:
Ошибка.
Попробуйте повторить позже
В прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем пирамиды вычисляется по формуле
где — площадь основания пирамиды,
— ее высота.
В основании пирамиды лежит треугольник
Высота
пирамиды совпадет с боковым ребром
Тогда объем пирамиды равен
Площадь треугольника равна половине площади прямоугольника
Ребра параллелепипеда и
параллельны, следовательно,
равны. Найдем объем пирамиды
воспользовавшись полученными
равенствами:
Ошибка.
Попробуйте повторить позже
В прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем пирамиды вычисляется по формуле
где — площадь основания пирамиды,
— ее высота.
В основании пирамиды лежит треугольник
Высота
пирамиды совпадет с боковым ребром
Тогда объем пирамиды равен
Площадь треугольника равна половине площади прямоугольника
Ребра параллелепипеда и
параллельны, следовательно,
равны. Найдем объем пирамиды
воспользовавшись полученными
равенствами:
Ошибка.
Попробуйте повторить позже
B прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем пирамиды вычисляется по формуле
где — площадь основания пирамиды,
— ее высота.
В основании пирамиды лежит треугольник
Высота
пирамиды совпадет с боковым ребром
Тогда объем пирамиды равен
Площадь треугольника равна половине площади прямоугольника
Ребра параллелепипеда и
параллельны, следовательно,
равны. Найдем объем пирамиды
воспользовавшись полученными
равенствами:
Ошибка.
Попробуйте повторить позже
В прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем многогранника равен половине объема прямоугольного
параллелепипеда
Ошибка.
Попробуйте повторить позже
B прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем многогранника равен половине объема прямоугольного
параллелепипеда
Ошибка.
Попробуйте повторить позже
В прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем призмы вычисляется по формуле
где — площадь основания призмы,
— ее высота.
Многогранник — призма с основанием
и высотой
Найдем его объем:
Ошибка.
Попробуйте повторить позже
В прямоугольном параллелепипеде известно, что
Найдите объём многогранника, вершинами которого
являются точки
Источники:
Объем призмы вычисляется по формуле
где — площадь основания призмы,
— ее высота.
Многогранник — призма с основанием
и высотой
Найдем его объем: