Уравнения и неравенства без логарифмов и тригонометрии на Газпроме
Ошибка.
Попробуйте повторить позже
Решите неравенство:
Подсказка 1
Во-первых, надо понять что в этом неравенстве хорошего, а что плохого. Хорошее — то, насколько похожие степени у нас слева и то, что у нас связаны числа в основании. Но как они связаны? А что нам это дает?
Подсказка 2
Это дает нам возможность сделать замену, ведь если заменить на t (2 + √3) в определенной степени, на месте (2-√3) появится 1/t! Какую тогда можно взять степень? Как решать такое неравенство?
Подсказка 3
Если сделать замену t = (2 + √3)^(x² - 6x + 8), то после сокращения неравенство превращается в t + 1/t < 4. Остается только решить его не забыть про неравенство на показатели, после чего получить ответ!
Преобразуем неравенство:
Домножив обе части на , получим
Заметим, что , следовательно, Уравнение можно записать в виде:
Сделаем замену переменной , тогда неравенство примет вид
Сделаем обратную замену:
Ошибка.
Попробуйте повторить позже
Решить систему уравнений:
Подсказка 1
Не совсем понятно, как работать с уравнениями по отдельности, поэтому попробуем их как-то связать. Что можно сказать о коэффциеинтах при каждой переменной?
Подсказка 2
Все коэффициенты нечётны, так что просто выделить полный квадрат вряд ли получится (и будет полезным). Но что можно сделать, чтобы всё-таки их собрать?
Подсказка 3
Сложите три уравнения! Тогда в выражении у нас будут и удвоенные произведения, и квадраты!
Прибавим к первому уравнению два других и выделим полные квадраты по каждой переменной:
Следовательно, единственное возможное решение. Проверим это подстановкой в уравнения системы:
Ошибка.
Попробуйте повторить позже
Точку случайно бросают на отрезок и пусть — получившееся значение. Найти вероятность, что корни уравнения
удовлетворяют условию
Подсказка 1
Нам нужно как-то связать корни с коэффициентами в квадратном уравнении. Можно попытаться воспользоваться дискриминантом, но получится ли красиво выразить корни? Как тогда работать с корнями иначе?
Подсказка 2
Воспользуйтесь теоремой Виета. Можно попробовать понять,при каких k у нас один корень будет ровно в 2 раза больше второго!
Подсказка 3
Один корень в два раза больще второго при k = 23/3.
Подсказка 4
Так как мы решаем неравенство для корней, то можно воспользоваться методом интервалов для k!
Подсказка 5
Вероятность надо считать, используя подходящий отрезкок!
По теореме Виета:
Найдём значение при условии, что , а затем воспользуемся методом интервалов:
Так как для , умножив обе части равенства на квадрат этого выражения, получим
Изобразим на числовой оси полученное значение , и проверим, какая часть оси удовлетворяет условию
Значит, условие выполняется для . Тогда
Ошибка.
Попробуйте повторить позже
Решить уравнение:
Подсказка 1
Заметим, что у нас есть корень из 2022. А также интересный коэффициент 2021. Что хочется сделать?
Подсказка 2
Давайте вычтем x³, чтобы получить коэффициент 2022. Ведь тогда мы сможем разложить выражение на множители!
Подсказка 3
Попробуем разложить на скобки. Получится, что хотя бы одна из двух скобок должна равняться 0. Один из корней сразу виден – это корень 6-ой степени из 2022. А вот второй пока непонятен. Что нужно сделать с уравнением 6-ой степени, чтобы мы умели его решать?
Подсказка 4
Конечно же, делаем замену на x³. Дальше остаётся неприятное квадратное уравнение, но даже с таким Вы точно справитесь!
Разложим на скобки:
Первое уравнение совокупности имеет одно решение .
Введём замену во втором уравнении , тогда:
Вернемся к исходной переменной и получим
Ошибка.
Попробуйте повторить позже
Решить неравенство
Подсказка 1
Слева какое-то страшное выражение и справа какое-то страшное… Не уж-то авторы задачи хотят, чтобы мы рассматривали пять вариантов, чему принадлежит наш х, а после этого пересекали каждый раз с нашим промежутком, а потом объединяли? Надо получше подумать. Знаменатели и числители попарно друг с другом удачно связаны. Это значит, что мы можем на что-то положительное домножить, чтобы у нас левая и правая части преобразовались. На что положительное здесь было бы удобно домножить, чтобы что-то могло свернуться по формулам и у чего-то убрался модуль?
Подсказка 2
Нам надо домножить на обратную к правой части дробь. Почему она положительна? Мы знаем, что x ≠ 4, при этом, и модуль и сумма модулей тогда строго больше 0. После домножения получили справа 1, а слева только один модуль во всей дроби! А если у нас остался только один модуль, то мы можем конкретно для него уже рассмотреть всего лишь два случая знака, и для каждого случая решить очевидное неравенство методом интервалов. Значит, идейно мы всё сделали, осталось только реализовать нашу идею!
При ограничениях и умножим обе части неравенства на положительную величину Получим равносильное неравенство
Выполним преобразования:
1) Пусть , тогда Неравенство примет вид
То есть, Учитывая, что получим
2) Пусть тогда Неравенство примет вид
то есть Учитывая, что , получим Таким образом, решением исходного неравенства является множество