Исследование функций и производные
Ошибка.
Попробуйте повторить позже
На доске написана функция Разрешается написать на доске производную любой написанной ранее функции, а также сумму и
произведение любых двух написанных ранее функций, так можно делать много раз. В какой-то момент на доске оказалась функция, равная
для всех действительных
некоторой константе
Чему может равняться
Любая функция, полученная описанным способом, — многочлен от и
с целыми коэффициентами. Доказательство индукцией по
числу шагов: исходная функция имеет такой вид; производная многочлена с целыми коэффициентами — многочлен с целыми
коэффициентами; аналогичное верно для суммы и произведения. При
синус и косинус принимают целые значения, поэтому значение
многочлена от них с целыми коэффициентами — целое, то есть
целое.
Положим
Запишем на доску
Тогда
Аналогично
Суммируя такие функции, получаем все чётные константы.
Покажем, что нечётную константу получить нельзя. Заметим, что
Поэтому все функции, которые можно получить, — это многочлены от и
с целыми коэффициентами и
нулевым свободным членом. При
остаются лишь члены с косинусом (равным 1). Коэффициенты при чётных степенях косинуса
чётны, а при нечётных либо иррациональны, либо равны нулю. Целочисленное значение получится, если сумма коэффициентов при
нечётных степенях равна 0, но тогда значение чётно, что и требовалось доказать.
Любому чётному числу.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!