Тема СПБГУ

СПБГУ - задания по годам .01 СПБГУ 2015 и ранее

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Разделы подтемы СПБГУ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#36855

В стране Альфия 150  городов, некоторые из которых соединены железнодорожными экспрессами, не останавливающимися на промежуточных станциях. Известно, что любые четыре города можно разбить на две пары так, что между городами каждой пары курсирует экспресс. Какое наименьшее число пар городов соединено экспрессами?

Источники: СПБГУ-15, 11.5 (см. rsr-olymp.ru)

Подсказки к задаче

Подсказка 1!

1) Какое-то странное условие про пары, как бы его использовать. Давайте попробуем придумать четверку вершин, для которых это условие выполнялось бы с трудом.. Может быть, для какой-то четверки не выполняется вообще... Здорово было бы получить из этого условия какое-то ограничение для наших вершин.

Подсказка 2!

Например, возьмем вершину, которая с тремя из всех не соединена. Выполнится ли условие в таком случае? Так, смотрите, мы получим оценку на степени вершины! Где-то я про это уже слышала, что-то про степени вершины в графе, да.....

Подсказка 3!

3) В точку! Какая-то популярная эта лемма. А теперь важно не забыть аккуратно построить пример для нашей чудесной оценки!

Показать ответ и решение

Оценка.

Если нашлась вершина (город) степени не больше 146,  то она не соединена хотя бы с тремя городами. Возьмём эти три города и саму вершину, получим, что она не может быть в паре ни с одним из них, откуда степень каждой вершины хотя бы 147.  Тогда по лемме о рукопожатиях рёбер в графе не меньше 147⋅150
  2  = 11025.

Пример.

Теперь расположим их все в вершинах правильного 150  -угольника(!). Проведём все рёбра графа, кроме сторон самого многоугольника (то есть выкинем 150  рёбер из полного графа). Легко проверить, что степень каждой вершины стала равна 147.  Выберем произвольную четвёрку городов и покажем, что она удовлетворяет условию задачи. Нам требуется найти их разбиение на две пары несоседних вершин — тогда внутри пар есть рёбра по построению. Но для этого достаточно соединить их через одну в том порядке, в котором они расположены в 150  -угольнике, тогда вершины в паре разделяет ещё хотя бы одна и соседними они быть не могут.

Ответ:

 11025

Ошибка.
Попробуйте повторить позже

Задача 2#79756

Натуральные числа x  и y  равны 2014  соответственно в десятичной и восьмеричной системе. Будет ли число x2000− y1000  точным квадратом?

Подсказки к задаче

Подсказка 1

Удобно ли нам работать с выражением, когда слагаемые записаны в разных системах счисления? Тогда вспоминаем алгоритм и переводим всё в привычную нам форму!

Подсказка 2

Большие степени явно намекают на то что вычислить выражение напрямую нам вряд ли удастся. Общий множитель, который можно вынести за скобки, конечно есть, но тоже вряд ли облегчит нам задачу. Что же остаётся делать?

Подсказка 3

Кажется, пора подумать о делимости и сравнениях по модулю! А что мы вообще хотим достичь? Какая (не)делимость поможет нам прийти к противоречию?

Подсказка 4

Может ли быть так, что точный квадрат делится на какое-то простое n, но не делится на n²? Осталось просто удачно подобрать это самое n!

Показать ответ и решение

Речь идёт о числе 20142000 − 10361000.  Покажем, что оно делится на 3,  но не делится на 9.  Действительно, 20142000 ≡ 12000 (mod 3).  То же самое можно сказать про     1000
1036  .  В то время как

    2000  2000  2000            1000  1000
2014   ≡ 7   ≡ 2    (mod 9),1036   ≡ 1   ≡1  (mod 9)

То есть по модулю 9  число сравнимо с 22000− 1.  Учитывая, что 26 ≡ 1 (mod 9),  имеем 22000− 1≡ 22 − 1= 3.  Значит, 3  входит в это число в 1  степени, то есть оно не квадрат.

Ответ:

Нет

Ошибка.
Попробуйте повторить позже

Задача 3#86756

Каждый из 250  школьников занимается хотя бы в одной, но не более чем в трех спортивных секциях. Известно, что в каждой секции состоят один или более школьников и составы любых двух секций различны. Каково максимально возможное количество секций?

Подсказки к задаче

Подсказка 1

Так, для того, чтобы максимизировать число секций, необходимо создать секции, где будет всего по одному человеку. Да! Действительно, давайте докажем это формально, используя принцип крайнего.

Подсказка 2

А может ли в одной секции быть сразу три человека. Нет, в таком случае максимизировать количество секций не получится! Докажем это, снова воспользовавшись методом крайнего.

Подсказка 3

Получается, что у нас существует все возможные секции, где только по одному человеку, а также по 3 человека в секции быть не может. Учтём эти два факта, аккуратно посчитав максимальное возможное число секций.

Показать ответ и решение

Пусть выбран некоторый максимальный набор секций.

Сделаем два замечания.

1)  Можно считать, что каждый ученик записан в секцию, состоящую только из него. Пусть школьник x  таков, что секции {x} нет. Выберем какую-нибудь секцию A,  в которую входит x,  и заменим ее на {x}.  В силу максимальности набора секция A∖{x} существует. Каждый школьник по-прежнему занимается хотя бы в одной секции и, значит, новый набор тоже удовлетворяет условиям задачи.

2  ) Можно считать, что в каждой секции не более двух человек. Пусть нашлась секция A,  в которую входят школьники a,b  и c.  Среди них есть двое (например, a  и b  ), не образующих секцию (иначе ученик a  был бы участником сразу четырех секций: {a},{a,b},{a,c} и A,  что невозможно). Тогда заменим A  на {a,b}.  В силу максимальности набора секция A∖{a,b} существует, потому новый набор тоже удовлетворяет условиям задачи.

Посчитаем максимальное количество секций с двумя участниками. Каждый ученик входит в не более чем две пары. Поэтому мы можем отождествить эти пары с набором ломаных на плоскости, вершины которых соответствуют школьникам. Максимальное число звеньев этих ломаных равно числу вершин, то есть 250.  Поэтому в силу 1)  и 2)  общее число секций равно 250+ 250 =500.

Ответ:

 500

Ошибка.
Попробуйте повторить позже

Задача 4#86758

Какое наибольшее количество различных подмножеств множества {1,2,...,2013} можно выбрать так, чтобы любые два различных выбранных подмножества имели ровно 2011  общих элементов?

Подсказки к задаче

Подсказка 1

Обозначим за A множество {1, 2, ..., 2013}. Сколько существует различных подмножеств множества A, которые могут содержать ровно 2012 элементов?

Подсказка 2

Верно! Их всего 2013. Очевидно, что эти множества подходят под условие. Можно ли выбрать еще больше подмножеств?

Подсказка 3

Правильно! Больше нельзя, но как это доказать? Пусть множеств больше, но тогда есть множество с 2011 элементами, как тогда получить противоречие из условия?

Показать ответ и решение

Пусть A = {1,...,2013}.  Ясно, что существует ровно 2013  различных подмножеств A,  содержащих по 2012  элементов, причем пересечение любой пары таких подмножеств состоит из 2011  элементов. Поэтому ответ задачи не меньше, чем 2013.  Докажем обратное неравенство. Предположим, что нашлись подмножества A1,...,A2014,  удовлетворяющие условию задачи. Тогда верны два утверждения.

1)  Любое из множеств Ak  содержит не более 2012  элементов. В противном случае найдется множество An,  совпадающее с A.  Тогда остальные множества Ak  содержатся в An.  Поэтому все они состоят из 2011  элементов и, значит, совпадают друг с другом, что невозможно. Таким образом, каждое из множеств Ak  содержит 2011  или 2012  элементов.

2)  Среди множеств Ak  ровно одно состоит из 2011  элементов. Действительно, хотя бы одно такое множество найдется, поскольку существует только 2013  подмножеств A  из 2012  элементов. С другой стороны, любые два множества, состоящие из 2011  элементов, совпадают.

Из доказанных утверждений вытекает, что в выбранную систему входят все 2012  -элементные подмножества A  и некоторое 2011  -элементное подмножество A  (например, A1  ). Но не все 2012  -элементные подмножества A  содержат A1,  что противоречит выбору множеств Ak.

Ответ:

 2013

Рулетка
Вы можете получить скидку в рулетке!