Тема ПВГ (Покори Воробьёвы Горы)

ПВГ - задания по годам .16 ПВГ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Разделы подтемы ПВГ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#85548

На испытаниях беспилотных летательных аппаратов лучшими оказались две модели. При встречном ветре 3 м/с модель Альфа продержалась в воздухе на 150 секунд меньше модели Бета, но пролетела на 500 метров дальше. Какая из моделей пролетит большее расстояние при безветренной погоде и на сколько? Скорость каждой из моделей считать постоянной. Время нахождения модели в воздухе определяется только ее техническими параметрами и не зависит от погодных условий.

Источники: ПВГ - 2024, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Вопрос задачи «Какая из моделей пролетит большее расстояние...». То есть не обязательно находить каждое расстояние по отдельности. Можно просто выразить их разность!

Подсказка 2

Введите переменные и составьте уравнения по условию задачи. Внимательно посмотрите на уравнение, связанное с расстояниями: может, именно там и скрывается искомая разность, нужно лишь применить в нём имеющиеся знания про разность времени полётов.

Показать ответ и решение

Решим задачу в общем виде. В условии заданы: u  м/с - скорость ветра; модель Альфа продержалась в воздухе на t  секунд меньше модели Бета; модель Альфа пролетела на l  метров дальше.

Пусть v1  и v2  - скорости при безветренной погоде моделей Альфа и Бета соответственно (в M ∕c  ), t1  и t2  - время (в секундах), которое первая и вторая модели соответственно продержались в воздухе.

Тогда при встречном ветре (v1− u)t1  - дальность полета модели Альфа, (v2− u)t2− дальность полета модели Бета. По условию:

t= t2− t1,  l=(v1− u)t1− (v2− u)t2 =v1t1 − v2t2 +ut.

При безветренной погоде разность между дальностью полета первой и второй моделей равна

x= v1t1− v2t2 = l− ut.

Таким образом, x> 0  , если l>ut;x< 0  , если l< ut;x =0  , если l= ut  . При u= 3,t=150  и l= 500  получаем x =500− 450 =50> 0  . Значит, модель Альфа пролетит дальше на 50 метров.

Ответ: модель Альфа, на 50 м

Ошибка.
Попробуйте повторить позже

Задача 2#85549

Найдите f(2024)  , если

f(x)=|2x− 1|− |2x− 3|+6 при x∈ [0;2]

и, кроме того, при всех целых значениях x  выполняются неравенства

f(x+ 3)≤ f(x)+ 6 и f(x+ 2)≥f(x)+ 4

Источники: ПВГ - 2024, 11.2 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Попробуем как-то связать два неравенства из условия. Какие аргументы для этого можно подставить?

Подсказка 2

Нужно подставить такое аргументы, чтобы числа в неравенствах могли получаться как с помощью +4, так и с помощью +6…

Подсказка 3

Попробуем поработать с f(x), f(x+3), f(x+6), а также с f(x+2), f(x+4). К каким неравенствам можно прийти? Какой вывод из этого сделать? Пробуем прийти к определенности, то есть к равенству!

Подсказка 4

f(x+6) <= f(x+3) + 6 <= f(x) + 12. Аналогично попробуем использовать и второе условие, к каким выводам придем?

Подсказка 5

f(x+3) = f(x) + 6, f(x+2) = f(x) + 4, f(x+1)=f(x)+2. А теперь попробуем задать функцию! ;)

Показать ответ и решение

Отметим, что f(0)= 4,f(1)= 6,f(2)= 8  . По условию, с одной стороны,

f(x+ 6)≤f(x+ 3)+6 ≤f(x)+12,

а, с другой стороны,

f(x+ 6)≥f(x+ 4)+4≥ f(x+ 2)+ 8≥ f(x)+ 12

Поэтому f(x+ 6)=f(x)+ 12  и, более того, все неравенства выше обращаются в равенства.

Поэтому f(x+ 3)=f(x)+ 6,f(x+ 2)= f(x)+4  и f(x+ 1)= f(x)+2  .

Таким образом, искомая функция - это функция f(x)= 4+ 2x  при целых значениях x  .

Кроме этого, известны значения функции на отрезке [0;2]  .

Значит, f(2024)=4+ 2024⋅2 =4052  .

Ответ: 4052

Ошибка.
Попробуйте повторить позже

Задача 3#85551

Решите уравнение

                            2
36cos(x+ cosx)cos(x− cosx)+ 9= π

и найдите сумму его корней, принадлежащих отрезку [π;7π]
 3 4 .

Источники: ПВГ - 2024, 11.3 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Работать с произведением косинусов неудобно. Какие преобразования можно сделать, чтобы облегчить решение?

Подсказка 2

Воспользуемся формулами преобразования произведения в сумму и сделаем замену. А что если рассмотреть выражение как функцию?

Подсказка 3

Функция слева приобретет вид f(t) = 2t^2-1 + cos(2t). Исследуем же ее!

Подсказка 4

Какой является эта функция и где она монотонна?

Подсказка 5

Функция f возрастает на [0;1] и является четной. Если пристально посмотреть, какие же t нам подходят? А какие из них попадают в наш отрезок?

Показать ответ и решение

Пользуясь формулами преобразования произведения в сумму, получаем

                π2  1
cos2x+ cos(2cosx)= 18 − 2

Пусть t=cosx  , тогда левая часть уравнения равна       2
f(t)= 2t − 1+ cos2t  . Функция f  возрастает на [0;1]  (так как  ′
f (t)= 2(2t− sin2t  ) >0 при t>0  ) и является чётной, причём   (π)  π2  1
f  6 = 18 − 2  . Следовательно, корнями уравнения      π2  1
f(t)= 18 − 2  на отрезке [−1;1]  являются числа     π
t= ±6  . Возвращаясь к переменной x  , находим

         π
x= ±arccos6 +πn,n∈ Z

Так как

        √ -
π = arccos--2< arccosπ< arccos1= π ,
4        2        6       2  3

то на указанный отрезок попадают корни π− arccosπ,π+ arccosπ
     6         6  и 2π− arccos π
         6  . Их сумма равна 4π− arccosπ
         6  .

Ответ:

 x =± arccosπ+ πn,n ∈Z
          6  .

Сумма корней равна          π
4π − arccos6.

Ошибка.
Попробуйте повторить позже

Задача 4#85553

В остроугольном треугольнике PVG  обозначили точку пересечения высот через H  , центр описанной окружности через O  . Площади треугольников OHP  и OHV  равны 5 и 3 соответственно. Найдите площадь треугольника OHG  .

Источники: ПВГ - 2024, 11.4 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Итак, на нашем чертеже треугольник и две точки внутри него. Как-то пусто, и совсем не понятно, что с такой картинкой делать. Значит нужно придумать, что еще тут построить. Может быть, отметить какую-нибудь точку так, чтобы о прямой, соединяющей эту точку и центр описанной окружности нам было что-то известно. Что это может быть за точка?

Подсказка 2

Пусть М - середина стороны PV. Тогда ОМ перпендикулярна PV, а GM - медиана треугольника. Пусть GM пересекает отрезок ОН в точке Т. Вот, теперь чертеж выглядит поинтереснее! Рассмотрите его и найдите подобие.

Подсказка 3

Итак, треугольники GHT и OTM подобны. Но с каким коэффициентом? Чтобы это узнать, нужно заметить, что Н - это не абы что, а ортоцентр, и вспомнить его свойства.

Подсказка 4

По свойству ортоцентра GH = 2*OM. Получается, GT : TM = 2 : 1. Как тогда относятся друг к другу площади треугольников GHO и OHM?

Подсказка 5

Так же как 2 к 1! Теперь выразите площадь OHM через известные нам площади. Тут самое главное не забыть рассмотреть случаи!

Показать ответ и решение

В точке H  пересекаются три высоты треугольника. Так как O  — центр описанной окружности, то в точке O  пересекаются серединные перпендикуляры треугольника. Пусть точка M  — середина стороны PV  , тогда GM  медиана. Точка T  — точка пересечения медианы и прямой OH  .

PIC

Треугольники MOT  и GHT  подобны (следует из параллельности прямых MO  и HG  , которые обе перпендикулярны прямой P V  ). Так как HG = 2⋅MO  (этот факт из школьной геометрии хорошо известен как "свойство ортоцентра"), то коэффициент подобия равен 2. Значит, GT :TM = 2:1  , то есть медиана GM  делится точкой T  в отношении 2:1  . Это означает, что T  - точка пересечения медиан треугольника P VG  . Поэтому площадь △OHG  в 2 раза больше площади △OHM  .

Так как M  — середина P V  , то

S      = S△OHP-+S△OHV--⇒ S     = S     + S    .
 △OHM          2          △OHG    △OHP    △OHV

Здесь ошибкой был бы вывод о том, что, значит, S      =5+ 3= 8
 △OHG  . Дело в том, что выше доказано, что одна из этих трех площадей является суммой двух других. Но какая именно, зависит от рисунка, который мы сделаем. Важно, где прямая OH  пересекает стороны треугольника. Если треугольник P VG  правильный, то точки O  и H  совпадают и указанные в условии задачи три площади вырождаются (это здесь невозможно, так как дано, что площади равны 3 и 5). Если прямая OH  проходит через любую вершину треугольника, то тогда одна из трех площадей равна 0 , а две другие — ненулевые, но равны между собой (тоже не наш случай). Если же прямая OH  пересекает две стороны (рассмотренный выше случай), то мы доказали, что одна из этих трех площадей (в одном случае это OHG  , в другом — OHP,  в третьем — OHV )  является суммой двух других.

Поэтому получаем либо 5+ 3= x  (то есть x= 8  ), либо 3+x =5  (то есть x =2  ), либо 5 +x =3  (что невозможно).

Ответ: 8 или 2

Ошибка.
Попробуйте повторить позже

Задача 5#85554

Кривая, заданная уравнением y = x2+ px+ q  , пересекает ось Ox  прямоугольной декартовой системы координат в точках A  и B  , а ось Oy  - в точке C  (все три точки различны). Известно, что точка D  равноудалена от точек A,B  и C  , а сумма ее координат равна (-2023). Найдите минимально возможную при данных условиях длину отрезка AB  .

Источники: ПВГ - 2024, 11.5 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

А, В, С — точки параболы, причём при пересечении с осями Ох и Оу. Тогда про координаты этих точек много уже известно. Подумайте, как называют точки пересечения параболы и оси Охи, и используйте известную теорему для квадратного уравнения.

Подсказка 2

Известная теорема для квадратного уравнения— теорема Виета. Используйте и другие условия задачи, постарайтесь получить значение q - p, ведь только эти переменные изначально даны в условии.

Подсказка 3

Вы уже знаете, что абсциссы А и В — это корни квадратного уравнения и помимо теоремы Виета у них есть явные формулы, используйте это, выражая АВ.

Показать ответ и решение

Из условия вытекает, что q ⁄= 0  . Если обозначить A(x;0),B(x;0),C(0;q),D (x;y)
   1      2  , то, очевидно, что x= x1+x2-
     2  . Далее

    2     2
|DB| = |DC |

     2   2   2       2
(x− x2) +y = x + (y − q)

2qy =q2+ 2xx − x2
           2  2

Так как 2x= x1+ x2  , то 2qy = q2+ x1x2  . Поэтому с учетом теоремы Виета: x =− p2,y = q+12-  .

Тогда из условия задачи имеем уравнение

q− p= 2⋅(− 2023)− 1 =− 4047

По формуле корней квадратного уравнения,

                -- ∘ ------
|AB|= |x2− x1|=√ D =  p2− 4q,

откуда следует

|AB|2 = p2 − 4q = p2− 4p +4⋅4047= (p− 2)2 +4⋅4046≥4 ⋅4046

Данное значение       √----   √ --
|AB |= 2 4046= 34 14  достигается при p =2,q = −4045  .

Ответ:

 2√4046= 34√14

Ошибка.
Попробуйте повторить позже

Задача 6#85555

Найдите все значения a  , при каждом из которых уравнение

        x      2
|2[tga]− 1| =[tga]+ 2

имеет рациональное решение x  . Здесь, [t]  - целая часть числа t  .

Источники: ПВГ - 2024, 11.6 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Чтобы найти все а, нужно сначала найти все возможные значения [tgа]. А чтобы целая часть тангенса не смущала, можно просто заменить её на некоторое целое число b.

Подсказка 2

Если b = 0, b > 0 и b < 0. Первый совсем простой. Рассмотрим, когда b > 0, то есть b — натуральное. Попробуйте оценить правую часть выражения. Может ли х быть отрицательный?

Подсказка 3

Чтобы ответить на вопрос предыдущей подсказки, Вам поможет неравенство (b - 1)² ≥ 0.

Подсказка 4

Эти выражения имеют одни и те же простые делители! Тогда если p — некоторый общий простой делитель, то пусть b² + 2 = pN, а 2b - 1 = pM. Избавившись от b в левых частях уравнений полученной системы, получите уравнение в целых числах(*) и сделайте вывод, чему может быть равно p.

Подсказка 5

р = 3. Поэтому можно записать b² + 2 как 3^n, а 2b - 1 как 3^m, тогда, используя это, (*) уже совсем несложно решается.

Подсказка 6

Случай b < 0, решается аналогично, если сделать замену c = -b.

Показать ответ и решение

Положим b= [tga]  . Тогда уравнение принимает вид (|2b− 1|)x =b2+ 2,b∈ ℤ  . Нужно найти все целочисленные значения b  , при которых существует рациональное решение x  .

При b= 0  решений нет. Рассмотрим вначале случай b> 0  , т.е. b∈ℕ  . Тогда поскольку при любом натуральном b

 2
b + 2> 2b− 1 ≥1,

то можем считать, что в представлении x= d∕q  числа d  и q  натуральные. Значит, числа b2+ 2  и 2b − 1  имеют одни и те же простые делители.

Пусть p  - общий простой делитель этих чисел, тогда

{ b2+ 2= pN,
  2b− 1= pM,

где N  и M  - натуральные. Исключая b  из левых частей уравнений этой системы, получаем

9= 4(b2 +2)− (2b− 1)(2b+1)= (4N − (2b+ 1)M )p.

Значит (4N − (2b+1)M )  - натуральное, а p  -делитель 9 , т.е. p= 3  . Поэтому

{
  b2+ 2= pm,
  2b− 1= pk,

где m  и k  - натуральные и m > k  . Так как

                               (    )       (             )
9= 4(b2+ 2)− (2b− 1)(2b+ 1)= 4⋅3m − 3k+2  ⋅3k =3k 4⋅3m−k − 3k− 2 ,

a 4⋅3m−k− 3k− 2  не делится на 3 , то k =2  и m = 3,b= 5,x= 32  .

Для отрицательных b  решение проводится почти аналогично. Положим c= −b  . Тогда исходное уравнение будет записываться в виде:

(2c+ 1)x =c2+ 2, c∈ ℕ.

Случай c=1  очевиден, поскольку решение x= 1  . Пусть c∈ℕ,c≥ 2  . Аналогично предыдущему показывается, что в представлении x= d∕q  числа d  и q  натуральные. Опять предположив, что p  - общий простой делитель этих чисел, получим

{
  c2+ 2= pN,
  2c+ 1= pM,

и также сделаем вывод, что p= 3  . Поэтому

{
  c2+ 2= 3m,
  2c+ 1= 3k,

где m  и k  - натуральные и m > k  . Так как

                               (    )       (             )
9= 4(c2+ 2)− (2c− 1)(2c+ 1)= 4⋅3m − 3k− 2 ⋅3k =3k 4⋅3m−k − 3k+ 2 ,

а 4⋅3m−k− 3k+ 2  не делится на 3 , то k= 2  и 4⋅3m−2− 32+2 =1  или 4⋅3m−2 = 8  , но последнее уравнение не имеет натуральных решений.

Поэтому все решения описываются уравнениями: [tga]= −1  и [tga]=5  , решив которые приходим к ответу.

Ответ:

 a ∈[−π∕4+πn;πn)∪[arctg5+ πn;arctg6+ πn),n ∈ℤ

Рулетка
Вы можете получить скидку в рулетке!